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The Zeta Calculus
A λ-calculus for quantum theories
NICKLAS BOTÖ and FABIAN FORSLUND
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
We propose an extension of the λ-calculus that models the behaviour of observ-
ables in quantum theory, the ζ-calculus. We give the definition of this language in
terms of symmetric monoidal categories, a categorywhich has sufficient structure
to capture finite-dimensional Hilbert spaces. The addition of abstractions which
introduce a variable with reference to some observable makes it possible to both
duplicate and discard this variable freely, while possibly producing some effect
such as entanglement. The general definition is then applied to concrete cases,
the first one producing a functional quantum programming language. This lan-
guage is shown to provide novel features and programming techniques, and is
able to be compiled to current quantum computers. The second case applies the
theory to fermionic quantum field theory, demonstrating that the generality of
the theory is able to capture more than quantum computation, creating a model
which we call spacetime computation. We identify that these models of the theory
lie on a hierarchy of models, on which we conjecture the existence of orders of
computation, ranging from the classical λ-calculus up to two orders above that of
quantum computation. Lastly, we try to connect the scientific background of the
thesis, quantum mechanics, and discuss what the philosophical implications of
a certain interpretation, the relational interpretation of quantum mechanics, are
on the philosophical framework of materialism. With this we present both a for-
mal system at the intersection of theoretical computer science and physics, and
philosophical motivations underlying the field as a whole.

Keywords: Lambda calculus, formal languages, type theory, category theory,
quantum computation, quantum mechanics, dialectical materialism.
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1
Introduction

Beauty crowds me till I die,
Beauty, mercy have on me!
But if I expire today,
Let it be in sight of thee.

E. Dickinson

WELCOME to the thesis. We introduce an extension to the classical λ-calculus
for computation over a set of observable structures in monoidal categories.

We call this extension the ζ-calculus. We extend the internal type theory for sym-
metric monoidal categories [1], a λ-calculus with a type system based on the mul-
tiplicative fragment of intuitionistic linear logic, to a non-linear language by intro-
ducing abstraction bases that allow for both contraction and weakening. Abstrac-
tion bases correspond to observable structures which are †-special commutative
Frobenius algebras in †-symmetric monoidal categories. [2]

We present the language as an extension of the classical λ-calculus with a
non-linear type system whose semantics is interpreted through monoidal string
diagrams. It is defined with respect to a general symmetric monoidal category,
whose concretisation in the category of finite-dimensional Hilbert spaces will also
be covered enabling a novel paradigm of quantum programming in terms of ab-
stractions denoting rotations of quantum states. Regarding quantum computa-
tion, the language implicitly embraces two fundamental aspects of quantum the-
ory: complementarity and entanglement where (i) complementarity takes effect
in the interaction between two abstraction bases and (ii) the non-linearity of the
language enables implicit entanglement of variables.

Hopefully, the meaning behind this quite difficult language will become
more clear in later chapters. In section 1.1 we present the background necessary
mainly for chapter 2 and to a small extent to chapter 3. In chapter 2 we provide the
full description of the language, presenting its syntax, type system and semantics.
Chapter 3 covers the concretisation of the language presenting specific models for
quantum computation aswell as spacetime computation and introduce the notion of
orders of computation. We digress slightly and discuss the philosophical backbone
of this work in chapter 4. Finally, in chapter 5 we discuss the implications of the
previous chapters as well as the work the two authors leave for the future.

1



1. Introduction

1.1 Background
In this section, we will introduce the necessary background for coming to grips
with the remainder of the thesis. The work mainly concerns the introduction of
a language for monoidal categories making use of observable structures for al-
lowing contraction and weakening in a category usually reserved for linear lan-
guages. While the primary intention is to introduce the language for a general
monoidal category, the primary application of the language is presented as one
for describing quantum processes. With this in mind, we will begin this section
by describing a number of notions from quantum computation that we find ap-
plicable. Then we move on to the section describing the background in computer
science that is necessary for the construction of the language. As the language is
introduced for monoidal categories we will spend the next part giving a descrip-
tion of the categorical environment we will be working in. Finally, we bring the
reader up to speed with the ZX-calculus, whose description of the interaction of
observable structures provided much inspiration for the authors in starting this
work.

1.1.1 Quantum computation
Here we will cover some of the prerequisites necessary for the understanding of
quantum computation as we see it. Using the categorical description of quantum
theory that is employed here throughout, it is not necessary to include some of
the typical constructions used in describing computation – quantum circuits in
particular – and it is further the view of the authors that this type of description of
quantum computation is more limiting in its scope than it is helpful, if at that. We
beginwith describingwhat aHilbert space is and then give the typical description
of quantum states and effects as vectors in a Hilbert space that are acted upon by
observables.

1.1.1.1 Hilbert spaces

A Hilbert space be seen as a generalisation of regular Euclidean space with some
additional structure.[3] A vector in a Hilbert space can be of any arbitrary dimen-
sion – even infinite-dimensional. Dealingwith these types of infinite-dimensional
vector spaces is difficult andwewill restrict ourselves here to only finite-dimensional
Hilbert spaces. There is a notion of inner product, written 〈u, v〉 over elements
u, v ∈ H. Using this inner product, the notion of the length of an element, called
the norm, can also be written as ‖v‖ =

√
〈v, v〉. The inner product is

1. Positive definite, meaning that ‖v‖2 ≥ 0 for all v ∈ H.

2. Complete, meaning that any Cauchy sequence of elements of H converges.

An infinite series of elements vm, . . . , vn inH is a Cauchy sequence if there is
somepositive real number ε and an integerN form,n ≤ N such that ‖vm−vn‖ < ε.

2



1. Introduction

Formally, a Hilbert space is a space V defined over a field K, along with
the inner product, an operation (+) : V × V → V for adding elements and an
operation (∗) : K × V → V for scaling elements, satisfying certain axioms. Any
Hilbert spaceH overK is then isomorphic toKn meaning that elements ofH can
always be written as n-tuples inK, after some particular vector basis is chosen.

We can define a Hilbert space over any number system with appropriate
structure. Of particular note are the four normed division algebras: the reals R,
complex numbers C, quaternions H and octonions O.¹ In quantum theory, this
field is usually taken to be the complex numbers C. As such, we will henceforth
consider n-dimensional Hilbert spaces isomorphic to the complex numbers H ∼=

Cn. As this is the topic mainly covered here, we will restrict ourselves to this case
for now. This brings about another property of the inner product: it is Hermitian,
meaning that 〈u, v〉 = 〈v, u〉∗, where (−)∗ is complex conjugation.

Vectors in a complex Hilbert space that differ only by a complex scalar c ∈ C
are said to correspond to the same physical state.[5] Thus we find a set of equiva-
lence classes of non-zero vectors v,w ∈ H (1.1).

(1.1) v ∼ w iff v = cw for some c ∈ C

where the vectors for which this relation applies are said to belong to the same ray.
The reason for this distinction is quite fundamental. For a quantum state repre-
sented as a vector v of some dimension d in a Hilbert spaceH, one usually makes
the presupposition (one of many) for this state to be called physically realisable that
all d entries of v, when normed and squared, add up to 1. I.e. v is normalised.
This is equivalent to the statement that the probabilities of the different measure-
ment outcomes of this quantum state add up to 1. Thus, for vectors belonging to
the same ray one wishes to consider these in their normalised state which is any
vector in this ray modulo the above equivalence relation. The Hilbert space mod-
ulo this equivalence relation is usually called the projective Hilbert space.[6] Note
that normalised vectors in a ray can still differ by a unit complex number, that is
a term of the form eiθ where |eiθ| = 1 for θ ∈ [0, 2π). I.e. if v is a normalised vector
in a ray then {eiθv : 0 ≤ α < 2π} is the set of all normalised vectors in that ray.

1.1.1.2 Quantum states, effects, and everything in between

The physical state of a quantum system is represented by a state vector |α〉, called
a ket² belonging to aHilbert spaceH. This vector is taken to encode all the relevant
degrees of freedom of that system, meaning that any information that might be
asked about the system in question could be ascertained from that state vector.[5]

State vectors that are of particular interest are those that are in an eigenstate of
some observable A, represented by a Hermitian (self-adjoint, with real eigenval-

¹See Solèr’s theorem. A discussion can be found in [4].
²This funny notation is due to Dirac, called the bra-ket notation. It is introduced by the man

himself in [7].

3



1. Introduction

ues) operator. The operator itself is usually represented by a complex matrix of
dimension n, i.e. of Cn×n. Examples of typical operators are the position operator
x giving the position of a particle or the spin operator Sz giving the spin along the
z-axis of a spin- 1

2
particle. We will return to the different spin observables later.

The eigenvectors of our observable A are said to span the space of possible states
for |α〉 to occupy. These eigenvectors (when normalised) form an orthonormal
set of basis vectors for the particular state space H considered by that observable.
State vectors |α〉 that are of particular interest are those that can be written as a
linear combination of the eigenvectors |ai〉 of an observable A (1.2).

(1.2) |α〉 =
∑
i

ci |ai〉

where the sum is taken over the set of eigenvectors and ci are amplitudes associ-
ated with each eigenvector, calculated by projection of the state vector upon each
eigenvector, written as ci = 〈ai|α〉 so that the expansion can in full be written (1.3).

(1.3) |α〉 =
∑
i

|ai〉〈ai|α〉

Here we have introduced the bra vector 〈ai|, also called an effect. This is a vector
that is said to live in the dual bra-space to the regular ket-space (which is just H).
Dual in the sense that, for each ket |α〉 there exists a bra 〈α|. If they are both
normalised then their inner product will equal unity, i.e. 〈α|α〉 = 1. Also for each
set of basis vectors {|ai〉} in the ket space there exists a corresponding set of basis
vectors {〈aj|} for the bra space so that any inner product between these is written
in terms of the Kronecker delta, i.e. 〈aj|ai〉 = δij. An observable A can now be
written in terms of its eigenvectors {|ai〉} and eigenvalues {λi} (1.4).

(1.4) A :=
∑
i

λi |ai〉〈ai|

We will now consider the example of the spin-observable above. The mea-
surable quantities of the spin direction of a spin- 1

2
particle, as measured along the

spatial axes x, y and z are represented by operators Sx, Sy and Sz. One of the first
signs of behaviour particular to the quantum nature of particles was the discovery
that particle spin is quantised. This was discovered in the famous Stern-Gerlach
experiment performed in the early 1920s and is covered in detail in [5]. What
quantised in this case means is that the basis vectors for a spin-observable take
on a discrete distribution. In particular, the two so-called spin-up and spin-down
states. The two spin-states for each spatial axis are represented by the eigenvec-
tors of the spin operator matrices, defined by Si = �h

2
σi for i = {x, y, z} and σi the

4



1. Introduction

Pauli-matrices (1.5).

(1.5) σx :=

(
0 1

1 0

)
σy :=

(
0 −i

i 0

)
σz :=

(
1 0

0 −1

)

With corresponding eigenvectors

|+〉 := 1√
2

(
1

1

)
|−〉 := 1√

2

(
1

−1

)
(1.6)

|i+〉 := 1√
2

(
1

i

)
|i−〉 := 1√

2

(
1

−i

)
(1.7)

|0〉 :=
(
1

0

)
|1〉 :=

(
0

1

)
(1.8)

These eigenvectors represent the basis vectors of the state space defined by
the spin observables. In quantum computation, where usually only the spin of
quantum states is considered, these play a fundamental role. The two spin-states
{|0〉 , |1〉} are usually taken as the so-called computational basis on which further
computation is carried out. The basic unit of information in quantum compu-
tation is the qubit. The spin-observable is one way of implementing qubit but
any two-level quantum system can be used. This naturally inherits the particular
properties and interactions of quantum states. A particular example of this is that
as opposed to classical bits which only exist in either state of 0 or 1, a qubit can
occupy any superposition of the basis states. That is, the state of a qubit can be
written as any linear combination of the basis vectors like

(1.9) |ψ〉 := α |0〉+ β |1〉

for α,β ∈ C, only that ‖ |ψ〉 ‖2 = |α|2 + |β|2 = 1. This has some interesting
geometric interpretations which will be explored further in section 3.1.

The state of a single qubit is usually represented in terms of its projective
Hilbert space, which in this case is the Bloch sphere. The state is represented as a
point on this unit two-sphere S2, with the three spin-observables corresponding
to the three spatial axes of the space the Bloch sphere sits in.

This concludes our introductory remarks on the theory of quantum physics
relevant for this thesis. While most of what is needed to fully comprehend this
theory, if possible, has been left out, this is covered in greater detail in various
textbooks on the subject, such as [5]. We will return later to a categorical descrip-
tion of quantum physics and computation as described in categorical quantum
mechanics and the ZX-calculus.

5



1. Introduction

1.1.2 The λ-calculus

The λ-calculus is a formal language and model of computation introduced by
Alonzo Church in the 1930s. The syntax of the language, the set Λ of λ-terms,
is defined inductively in figure 1.1. An introduction to the theory can be found in
[8], while [9] is a more extensive resource.

x ∈ Λ
VAR

M ∈ Λ
λxM ∈ Λ

ABS
M ∈ Λ N ∈ Λ

MN ∈ Λ
APP

Figure 1.1: The syntax of the λ-calculus.

The core of the language is the λ-abstraction, a term on the form λxM, intro-
duced by the rule (ABS). Intuitively this represents a function that accepts a vari-
able x and returns the termM, where x may or may not appear. An application,
introduced by the (APP) rule, represents a function being applied to an argument.
The (VAR) rule introduces variables, which are assumed to range over a countably
infinite set of names.

(1.10)

fv ∈ Λ→ P(Var)
fv(x) := {x}

fv(λxM) := fv(M) \ {x}

fv(MN) := fv(M) ∪ fv(N)

We differentiate variables that are introduced by a λ-abstraction, from those
which appear free. A bound variable x appears in a λ-term on the form λxM,
whereas a free variable appears without a λ-abstraction binding it. The meta-
function fv returning the set of free variables in a term is defined in equation
(1.10). Let the set of λ-terms which contain the set of free variables X be defined
as ΛX := {M ∈ Λ | fv(M) = X }. The set of closed λ-terms, which contain no free
variables, is then denoted Λ∅.

We also define the operation of substitution, denoted M[x := N]. This rep-
resents the replacing of every free occurrence of x inM with the term N. Its full
definition for terms N,P,Q ∈ Λ is in (1.11).

(1.11)

x[x := N] ≡ N
y[x := N] ≡ y

(λxP)[x := N] ≡ λxP
(λyP)[x := N] ≡ λyP[x := N] y 6∈ fv(N)

(PQ)[x := N] ≡ P[x := N]Q[x := N]

6
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Here, the notationM ≡ Ndenotes syntactic equality,meaningα-equivalence,
that we can make these terms exactly equal with a change of bound variable
names.

1.1.2.1 Notions of reduction

Moving on from the definition of the syntax we have the subject of reduction. A
notion of reduction is simply a relation on the set of λ-terms which fulfils rules in
figure 1.2, called a compatible relation. Compatibility of a relation ensures that it
holds for all subterms that appear in some expression.

(M,M ′) ∈ R
(λxM, λxM ′) ∈ R

(M,M ′) ∈ R
(MN,M ′N) ∈ R

(N,N ′) ∈ R
(MN,MN ′) ∈ R

Figure 1.2: A compatible relation R ∈ Λ×Λ.

Moreover, we have the following notational convention. A compatible rela-
tion (M,N) ∈ R:

• is a one-step reduction relation writtenM→R N.

• is a reduction relation writtenM�R N iff it is also reflexive and transitive.

• is a congruence relation writtenM ≡R N iff it is also an equivalence relation.

The two most common notions of reduction are called β-reduction and η-
reduction. The relation of β-reduction is one of substitution.

(1.12) β := { ((λxM)N,M[x := N]) |M,N ∈ Λ }

It states that when a λ-abstraction λxM is applied to some term N, we sub-
stitute the variable x for N in M. This is simply the application of a function in
the λ-calculus.

The relation of η-reduction represents extensional equality, the statement
that two functions are equal if and only if they are equal in all arguments.

(1.13) η := { (λxMx,M) |M,N ∈ Λ and x /∈ fv(M) }

It has one additional requirement of x not appearing in the termM. When
this requirement is fulfilled the term λxMx represents a function that takes an
argument and passes it toM, and thus it has the same meaning asM. For both
of these cases, the actual relation is the least compatible relation which includes
them.

7
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1.1.3 Type theory

Here we will present a short exposition of another concept central to our thesis,
type theory. Type theory defines and studies type systems, sets of formal rules
that assign a type to every term in some language. When presenting a termM of
some type A we writeM : A, a simple example of which would be 0 : N. When
presenting a set of rules for a type system, we usually define them as judgements
dependent on a context. A context is a set of typed variables, from which we can
draw conclusions in a judgement. For a context of typed variables Γ we write
a typing judgement as Γ ` M : A. A typing rule is presented as a number of
premises, judgements that we know to hold, and a conclusion we can draw from
them. For example, if we are defining a set of typing rules for natural numbers
we might have rules on the form (1.14).

(1.14)
Γ `M :N Γ ` N :N

Γ `M+N :N
ADD

x : A ∈ Γ
Γ ` x : A

VAR

The first rule states that, if we can deduce that both M and N are natural
numbers, then their sum would also be a natural number. The second rule is an
axiom (a rule without premises) stating simply that if a variable has a type in the
context, we can deduce that it has that type. Using these rules, in the context x :N
we have a valid type derivation (1.15).

(1.15)

x :N ∈ {x :N}

x :N ` x :N
VAR

x :N ∈ {x :N}

x :N ` x :N
VAR

x :N ` x+ x :N
ADD

This derivation proves that, if we have some natural number x, the sum of x
with itself is also a natural number.

Underlying the usual presentation of typing rules are rules which do not
refer to any specific construct of a language, called structural rules. These rules
present properties of the type system more generally. The usual structural rules
that are employed are weakening, contraction, and exchange, presented in figure
1.3.

Weakening states that, if we can derive some judgement in a context Γ , we
are also free to derive it with some superfluous variable. In a sense, contraction
states the converse of weakening, that if we derive some judgement using two in-
stances of a variable of the same type, we can derive it with one variable of that
type instead. Finally, exchange states that the order of variables in the context of
some judgement does notmatter, andwe can derive the same judgement with any
ordering of variables. With the preliminaries of type theory defined we can move
on to a specific type system for the λ-calculus. These rules are implicit in the pre-

8
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Γ `M : B

Γ, x : A `M : B
W

Γ, x1 : A, x2 : A `M : B

Γ, x : A `M[x1 := x, x2 := x] : B
C

Γ, x : A,y : B,∆ `M : C

Γ, y : B, x : A,∆ `M : C
X

Figure 1.3: Structural rules.

sentation of typing rules we have presented so far, the context Γ being copied (by
contraction) to each of the premises in the (ADD) rule, and the remaining variables
in Γ , other than x, being discarded (by weakening) in the (VAR) rule.

1.1.3.1 The simply typed λ-calculus

One of the first type systems that is studiedwhen getting familiarwith type theory
is the simply typed λ-calculus [9, Appendix A]. In this language we assign a type
to terms of the untyped λ-calculus we outlined earlier. First we define the set of
types as Types A,B ::= C | A → B, where C is some set of predefined types.
We need not worry about this set here, usually, it entails some set of constants
of the language, for example the set of integers. We will instead focus on the
second constructor, that of function types. We present the set of typing rules for
the simply typed λ-calculus in figure 1.4.

x : A ∈ Γ
Γ ` x : A

VAR
Γ, x : A `M : B

Γ ` λxM : A→ B
→i

Γ `M : A→ B Γ ` N : A

Γ `MN : B
→e

Figure 1.4: The typing rules of the simply typed λ-calculus.

Each of the typing rules corresponds to a specific syntactic construct in the λ-
calculus, that is we have rules for (VAR), (ABS), and (APP) of figure 1.1 respectively.
The first rule, as the variable rule before, states that if a typed variable appears in
the context, we can deduce that the variable has that type. The second rule intro-
duces the function type (wherefore we name it→i). It states that if we can deduce
that, given that the variable x has the type A, thatM has the type B, then the λ-
abstraction λxM is a function that accepts an argument of type A and produces a
term of type B. The final rule eliminates the function type, by applying a function
to an argument. It states that, given a functionM that accepts terms of typeA and
producing terms of type B, if we have some termN of type A, we can applyM to
N and obtain a term of type B.

9
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1.1.3.2 Linear type theory

We will now revisit the structural rules presented before, and specifically what
happens whenwe omit contraction andweakening. The reason for omitting these
rules comes from linear logic, a logic which is resource aware. What this means for
us is that wewant to be aware of exactly howmany times a variable can be used in
a typing derivation. If weakening is allowed we are free to discard variables that
are left unused. Conversely, if contraction is allowedwe are free to copy variables.
To see this concretely we revisit (1.15). In this derivation the variable x is used in
both of the premises of the (ADD) rule, which is allowed due to contraction. Thus,
to ensure that variables are used exactly once, we have to omit both weakening and
contraction from the structural rules. A type system of this form, called a linear
type system was first introduced for the λ-calculus by Philip Wadler [10] for this
exact purpose. We present the subset of the typing rules relevant to the syntax of
figure 1.1, in figure 1.5.

x : A ` x : A
VAR

Γ, x : A `M : B

Γ ` λxM : A( B
(i

Γ `M : A( B ∆ ` N : A

Γ,∆ `MN : B
(e

Figure 1.5: Typing rules for the linear λ-calculus.

Note the main difference here, compared to the rules presented in figure
1.4, that the setup of the contexts is different. For the (VAR) rule we require the
context to consist of exactly the variable to be typed. In the ((e) rule we have two
separate contexts. With the structural rules ofweakening and contraction omitted,
we can no longer write the typing rules in the same way as before, duplicating
and discarding contexts freely. This set of rules then guarantees that only the
judgements which use variables exactly once are derivable.

1.1.4 Category theory
We introduce here a subject that is central to the paradigm of quantum theory this
thesis utilises, category theory. A comprehensive review of the topic from a per-
spective useful to this thesis can be found in [11, 12]. Category theory (unsurpris-
ingly) studies categories, collections of things (called objects) and transformations
between things (called morphisms).

Definition 1.1.1 (Category). A category C is defined by:

• A collection of objects Obj(C).

• A collection of morphisms Hom(C). For each pair of objects A,B ∈ Obj(C)
there exists a collection of morphisms HomC(A,B), from A to B. We some-
times write f : A→ B for a morphism f ∈ HomC(A,B).

10
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• The binary operation ◦ : HomC(B,C) × HomC(A,B) → HomC(A,C), com-
position of morphisms, with the following properties:

1. (Associativity) For anymorphisms f : A→ B, g : B→ C, and h : C→ D:

(1.16) h ◦ (g ◦ f) = (h ◦ g) ◦ f

2. (Identity) For any object A ∈ Obj(C) there exists a morphism 1A : A →
A, such that for any morphism f : A→ B:

(1.17) f ◦ 1A = f = 1B ◦ f

Throughout the thesis we will introduce a number of categories with added
structure at an abstract level. When talking about these categories with reference
to somemathematical structure, that is, objects are inhabited by an instance of this
structure andmorphism bymaps between them, they are called concrete categories.

A simple example of a concrete category is Set, the category of sets and func-
tions on sets. Then,

• Obj(Set) is the collection of all sets.

• For any sets X, Y ∈ Obj(Set), HomSet(X, Y) are the functions between the
sets.

• The composition of morphisms is the usual composition of functions.

• The identity morphism is the function 1(x) := x.

At times, we will need to display collective properties of categorical con-
structs. A common tool for this is the commutative diagram. For example, let C
be some category, A,B,C,D ∈ Obj(C), f : A → B, g : C → D, f ′ : C → D, and
g ′ : B→ D. Then we can display this as the commutative diagram:

A B

C D

f

g

f ′

g ′

To say that a diagram commutes is saying that for any directed path with the
same start and end point we obtain the same result; in this case g ′ ◦ f = f ′ ◦ g.

1.1.4.1 Functors and natural isomorphisms

Here we will introduce some concepts central to category theory which might
seem, at first glance, somewhat unjustified. We will introduce the concepts on a
formal level here, to serve as a reference later. The first concept is the functor.

11
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Definition 1.1.2 (Functor). For categories C and D, a functor F : C → D is defined
by:

• An object map F : Obj(C) → Obj(D), which maps objects A ∈ Obj(C) to
objects F(A) ∈ Obj(D).

• A morphism map F : Hom(C) → Hom(D), which for any objects A,B ∈
Obj(C)mapsmorphisms f ∈ HomC(A,B) tomorphisms F(f) ∈ HomD(F(A), F(B)).

Such that it preserves composition and identities, that is:

1. For any morphisms f ∈ HomC(A,B) and g ∈ HomC(B,C):

(1.18) F(g ◦ f) = F(g) ◦ F(f)

2. For any object A ∈ Obj(C):

(1.19) F(1A) = 1F(A)

Functors can also accept many arguments, a bifunctor F : C1 × C2 → D for
example. The functor requirements are required to hold for each argument of the
bifunctor, together with the requirement that F(1A1

, 1A2
) = 1F(A1,A2) and that the

following diagram commutes:

(1.20)

F(A1 ×A2) F(A1 × B2)

F(B1 ×A2) F(B1 × B2)

F(1A1
,f2)

F(f1,1B2
)F(f1,1A2

)

F(1B1
,f2)

for objects An, Bn ∈ Obj(Cn) and morphisms fn ∈ HomCn(An, Bn).
Putmore simply, a functor is a structure-preservingmap between categories.

Extending this even furtherwe have natural transformations. In this sense, a func-
tor is amorphism between categories, and a natural transformation is amorphism
between functors.

Definition 1.1.3 (Natural transformation). For categories C and D, and functors
F,G : C → D, a natural transformation ξ : F⇒ G is defined by:

• An assignment ξA : F(A) → G(A) for every object A ∈ Obj(C) such that for

12
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any morphism f ∈ HomC(A,B) the following diagram commutes:

(1.21)

F(A) F(B)

G(A) G(B)

F(f)

G(f)

ξA ξB

In a diagram, a natural transformation ξ : F ⇒ G on categories C and D is
written:

C D

F

G

ξ

Finally, we have natural isomorphisms which add the requirement of invert-
ibility to a natural transformation.

Definition 1.1.4 (Natural isomorphism). For categories C and D, and functors
F,G : C → D, a natural isomorphism ξ : F ' G is a natural transformation such
that:

• There exists, for each assignment ξA : F(A) → G(A), an inverse morphism
ξ−1A : G(A) → F(A) such that:

(1.22) ξ−1A ◦ ξA = 1F(A) and ξA ◦ ξ−1A = 1G(A)

This concludes our summary of the general definitions of category theory.
This field is rich and varied, and we have left out many things for the sake of
brevity. In the remainder of the thesis, we will use categories, functors, and nat-
ural isomorphisms to define the important concepts in categorical quantum me-
chanics and to connect our work to them.

1.1.4.2 Monoidal categories

The central category studied in categorical quantummechanics is the monoidal cat-
egory. This is a category extended with a monoidal product. Monoidal referring
to that this product has a notion of associativity and units. We begin by defining
the bare monoidal category and step-wise add new structure to finally get a de-
scription of the specific category we consider henceforth: a †-compact symmetric
monoidal category. The definitions of these categories come with requirements
on the structure that they add. As these requirements are not of importance for
the concepts we define in the thesis, we will refer to [11] for the definitions of
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these. We will continually make comparisons to the concrete category of finite-
dimensional Hilbert spaces, FdHilb, to make these definitions somewhat more
clear in the context of quantum theory.

Definition 1.1.5 (Monoidal category). A monoidal category is a category (C,�, I)
with a bifunctor � : C × C → C and a distinguished object I such that:

1. For any objects A,B,C ∈ Obj(C), there is a natural isomorphism αA,B,C :

(A� B) � C ' A� (B� C) called the associator.

2. For any object A ∈ Obj(C), there are two natural isomorphisms called the
left unitor λA : I�A ' A and right unitor ρA : A� I ' A.

In the context of quantum theory, we have that the monoidal product is the
tensor product on Hilbert spaces, and the unit is the Hilbert space C of complex
scalars. If we further add a notion of swaps performed on products we get the
following definition.

Definition 1.1.6 (Symmetricmonoidal category). Asymmetricmonoidal category
is a monoidal category C, with the addition of a natural isomorphism σA,B : A �
B ' B�A such that:

1. For any objects A,B ∈ Obj(C), we have that σA,B ◦ σB,A = 1A�B.
Looking again at the category of finite dimensional Hilbert spaces we have

that the usual swap map σ := |00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11| fulfils this
condition, and thus is also a symmetric monoidal category (SMC).

Definition 1.1.7 (†-symmetric monoidal category). A †-symmetric monoidal cat-
egory is a symmetric monoidal category C with the addition of a functor † : Cop →
C, where Cop is the category with all morphisms reversed, such that:

1. For any object A ∈ Obj(C), we have A† = A.

2. For any objects A,B ∈ Obj(C), and any morphism f ∈ HomC(A,B) we have
that f† ∈ HomC(B,A), preserving the monoidal structure of morphisms:

(1.23) (f ◦ g)† = g† ◦ f† (f� g)† = f† � g† 1
†
A = 1A f†† = f

In FdHilb, the †-functor appears as the adjoint of maps between Hilbert
spaces satisfying the above conditions,makingFdHilb also a †-SMC.Vectorsψ,ϕ :

C→ H also appear as morphisms, so that together with the adjoint one gets a cat-
egorical notion of the inner product of vectors in a Hilbert space. I.e.

(1.24) 〈ϕ|ψ〉 = ϕ† ◦ψ : C→ C
Vectors like those above of the form I → H are referred to as states or points and
those of the type H → I are referred to as effects.
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Definition 1.1.8 (†-compact category). A †-compact category C is a †-symmetric
monoidal category which for every object A ∈ Obj(C) includes:

1. A dual object A∗ ∈ Obj(C)

2. A pair of morphisms ηA : I → A � A∗ and η†A : A∗ � A → I, respectively
called the unit and counit.

We found in 1.1.1.1 the notion of a bra-space, being the space dual to the
usualHilbert space of kets. Thus, for FdHilbwehave for every objectH, a dual ob-
ject H∗ corresponding to a bra-space. Further, we can form the unit η as the max-
imally entangled quantum state 1√

2
(|00〉+ |11〉), with η† formed using the adjoint

of this expression. We thus find that all the conditions above are fulfilled, mean-
ing that FdHilb is a †-compact category (fully, a †-compact symmetric monoidal
category).

1.1.4.3 Internal language for an SMC

The internal logic for symmetric monoidal closed categories is the multiplicative
fragment of intuitionistic linear logic [12]. Mackie et. al. produced a language
with a type system corresponding to this logic in [1]. This language is a linear
λ-calculus with a tuple construction, corresponding to the monoidal functor, and
a unit, corresponding to the monoidal unit. The syntax of this language, the set
ΛSMC, is presented in figure 1.6.

⋆ ∈ ΛSMC x ∈ ΛSMC
M ∈ ΛSMC
λxM ∈ ΛSMC

M ∈ ΛSMC N ∈ ΛSMC
MN ∈ ΛSMC

M ∈ ΛSMC N ∈ ΛSMC
〈M,N〉 ∈ ΛSMC

M ∈ ΛSMC N ∈ ΛSMC
let 〈x, y〉 =M in N ∈ ΛSMC

M ∈ ΛSMC N ∈ ΛSMC
M #N ∈ ΛSMC

Figure 1.6: The syntax of the internal language of SMCs.

This is an extension of the syntax presented in figure 1.1. Other than the
tuple 〈M,N〉 and unit ⋆, we have their respective eliminations as let-expressions.
We have chosen to present the let-elimination of the unit let ⋆ =M in N asM #N,
to reduce clutter. It is the expression that discards the unitM.

The following types are defined:

• For types A and B, A( B is the linear function type.

• For types A and B, A� B is the tensor product type.
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• The unit type I, which is the unit of the tensor product type.

Concretely given by the grammar A,B ::= I | A � B | A ( B. Contexts are
defined in the same way as in the simply typed λ-calculus, Γ, ∆ ::= ∅ | Γ, x : A.

The language is a linear one, so the structural rules of contraction and weak-
ening are omitted, leaving only exchange. The type system extends on the one
given for the linear λ-calculus in figure 1.5, adding rules for the additional con-
structs. These rules are presented in figure 1.7.

x : A ` x : A
AX

Γ, x : A,y : B `M : C

Γ, y : B, x : A `M : C
EX

` ⋆ : I
Ii

Γ `M : I ∆ ` N : A

Γ,∆ `M #N : A
Ie

Γ `M : A ∆ ` N : B

Γ,∆ ` 〈M,N〉 : A� B �i

Γ `M : A� B ∆, x : A,y : B ` N : C

Γ,∆ ` let 〈x, y〉 =M in N : C
�e

Γ, x : A `M : B

Γ ` λxM : A( B
(i

Γ `M : A( B ∆ ` N : A

Γ,∆ `MN : B
(e

Figure 1.7: Typing rules for the internal language of SMCs.

The paper also provides the language with notions of reduction, both β-
reduction and η-reduction as we discussed them earlier, on the added constructs.
These reduction relations are presented in figure 1.8.

⋆ #M→β M M # ⋆ →η M

let 〈x, y〉 = 〈M,N〉 in P →β P[x :=M,y := N] let 〈x, y〉 =M in 〈x, y〉 →η M

(λxM)N→β M[x := N] λxMx→η M

Figure 1.8: Notions of reduction on the internal language of SMCs.

This language is called the internal language of SMCs since we can use it to
describe themorphisms of the category³. This is done by constructing the category
where the objects are the types of the language. A morphism f : A → B in the
category is an equivalence class of pairs (x : A,M : B) of terms M which get
assigned by the type system the type B in the context of x : A, that is x : A `M :

B. A more detailed description of this process of constructing an SMC from the
theory of ΛSMC can be found in the original paper [1].

³The general definition of an internal language or internal logic is more involved than this, but
this is the way in which it is relevant for the work here.
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1.1.4.4 String diagrams

Wewill shortly consider the use of stringdiagrams in computer science andphysics
for describing processes. When linearly writing down a description of a process,
the equations can easily become complicated and difficult to work with. Penrose
[13] introduced a diagrammatic calculus for representing and manipulating ab-
stract tensors, involving operations like composition, addition and contraction of
indices, etc. He showed that the planar representation of large tensorial calcula-
tions gave a simpler pictorial interpretation.

A monoidal category C has a process f : A → B, that is a morphism f ∈
HomC(A,B)with input andoutput objectsA andB, respectively, forA,B ∈ Obj(C).
This morphism is represented in a string diagram as in figure 1.9a.

f BA

(a) A single morphism.

f BA

g BA

(b) Parallel.

f CA g

(c) Sequential.

Figure 1.9: Representation of a single morphism, parallel and sequential compo-
sition of morphisms in a string diagram.

Two morphisms f : A → B, g : A → B can be placed in parallel using the
monoidal product as f�g : (A→ B)�(A→ B), likewise f�g : (A�A) → (B�B),
represented in figure 1.9b. The sequential composition of twomorphisms f : A→
B, g : B → C, written as g ◦ f : A → C can also be represented simply in a string
diagram, shown in figure 1.9c.

One important aspect of string diagrams, noted in [14], is that topologically
equivalent diagrams denote the same morphism. That is, if one diagram can be
arbitrarily deformed into another then they are equivalent. Thus we need only
consider how the components of a diagram are connected, coined in the short-
hand ’only topology matters’. [2]

We hope this short introduction to string diagrams has been enough for the
interpretation of diagrams presented later in the thesis. The particular form of
string diagrams that we employ is that used in the ZX-calculus introduced below,
where we hope that greater intuition can be built around string diagrams than
our introduction in this short section.
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1.1.5 The ZX-calculus

Moving on from general string diagrams, abstract category theory and quantum
physics, we now wish to introduce a particular synthesis of these varied fields,
the ZX-calculus [2]. This is the seminal language for describing quantum pro-
cesses in a categorical setting and was a leading inspiration to both authors in
the work presented here. The ZX-calculus is a graphical language for describing
quantum processes, although much more than this. It provides distinct and in-
tuitive means of reasoning about quantum processes through categorical string
diagrams, where the usual abstract description of the manipulation of algebras of
quantum observables, and their interactions are given a simple interpretation in
the building blocks and rules of the calculus. We include an example of a partic-
ular ZX diagram equation (1.25).

(1.25) =

The example shows the diagrammatic building blocks of the ZX-calculus,
red and green nodes (otherwise known as spiders), connected by a number of
wires. As we are in the categorical setting, diagrams represent morphisms in a
monoidal category and as the concrete category usually is taken to be FdHilb,
these morphisms denote linear maps on finite-dimensional Hilbert spaces. The
language centres around these red and green spiders, the general versions ofwhich
are shown in (1.26) and (1.27).

α...
...
mn := |0〉�m 〈0|�n + eiα |1〉�m 〈1|�n(1.26)

α...
...
mn := |+〉�m 〈+|�n + eiα |−〉�m 〈−|�n(1.27)

The colour of a spider denotes the observable structure from which it is con-
structed (this term will be formally defined below). As noted in section 1.1.1.2,
every observable comes with an orthonormal set of basis vectors, and it is from
these that the spiders are constructed. Specifically, the spiders here describe ro-
tation of a state about the axes Z and X of the Bloch-sphere by a phase α ∈ [0, 2π).
In figure 1.10 we have drawn these axes on the Bloch sphere, as well as the points
which lie on them, and the rotations defined by them. The Z axis is drawn in
green, and the X axis as red, like their spider counterparts.

A special node for the Hadamard gate is also defined, as a yellow box. This
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|0〉

|1〉

|+〉
|−〉

Figure 1.10: The Bloch-sphere with axes of rotation.

gate can be defined by decomposing it into angles of rotation through the already
defined spiders, producing its definition in (1.28).

(1.28) := π
2

π
2

π
2 = |+〉〈0|+ |−〉〈1| =

1√
2

(
1 1

1 −1

)

With this, we have all of the elements of the language defined. Comparing
this description of quantum processes we have presented before, with the dis-
tinction of quantum states, effects, and ”everything in-between”, it becomes very
clear in the ZX-calculus. A state is simply a diagramwith no input wires, an effect
has no outputs, and everything else is in-between. The basis vectors of each of the
observables are recovered by states of the other spider, shown in (1.29).

(1.29)
π = |0〉− |1〉

= |0〉+ |1〉 |+〉

|−〉=

=

π = |+〉− |−〉

= |+〉+ |−〉 |0〉

|1〉=

=

The actual observables, as witnessed by the Pauli-Z and X matrices, are sim-
ply rotations about their respective axes by a π phase. As such, in the ZX-calculus,
these are unary spiders with phase arguments of π, as shown in (1.30).

(1.30) π = |0〉〈0|− |1〉〈1| =

(
1 0

0 −1

)
π = |+〉〈+|− |−〉〈−| =

(
0 1

1 0

)

With the definitions of the elements of ZX-diagrams, wemove on to the equa-
tional rules of the language. This ruleset originates from the algebraic construc-
tion of the two complementary observables, which we will cover further in section
1.1.5.1. These are defined over equality up to a global non-zero scalar. This means
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that, for ZX-diagrams D1 and D2, the statement D1 = D2 states that their respec-
tive interpretations can be made equal by some complex scalar λ ∈ C, that isJD1K = λJD2K, where λ 6= 0. We show the full set of rules of the equational theory
of the ZX-calculus in figure 1.11.

α

θ

...
...

...
...

...
(f)
= α+θ

...
...

...
...

(h)
=

...
...α α

αaπ ...

(π)
=

aπ

aπ

aπ

−α
...

αaπ ...

(c)
=

aπ

aπ

aπ

...

...
...n m

(b)
=

...
...n m

(hh)
=

(id)
=

Figure 1.11: The equational theory of the ZX-calculus.

In this figure, all the rules hold with the colours of the spiders reversed, and
twowireswith vertical dots between themdenoting that there can be zero ormore
of wires. Though all of these rules are of importance when using the ZX-calculus
for simplifying quantum processes, we wish to highlight only a subset of them for
reference in the remainder of the thesis.

The fusion rule (f) states that spiders that are connected by one ormorewires
can be fused together. This produces a single spider with the previous phases
summed. The basis state copy rule (c) states that the basis states of one spider are
perfectly copied by the dual spider, nomatter the phase of the copying spider. The
colour change rule (h) states a well-known fact about the Hadamard transform,
that it switches the perspective between Z and X. What this means for the ZX-
calculus is that when a spider of one colour is surrounded by Hadamard boxes,
then we can simply remove the boxes and change the colour of the spider. Lastly,
the identity removal rule (id) remarks that a unary spider (one input, one output)
of any colour, with zero phase, is equal to the identity wire.

This is the extent to which we intend to cover the ZX-calculus as a language
on its own in this thesis, though we will discuss our language in connection to it
frequently. A beginner-friendly introduction to the subject can be found in [15],
while the foundational paper on the subject [2] provides its full definition.
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1.1.5.1 Observable structures

Having given a top-level description of the ZX-calculus, we will now move on to
the categorical and algebraic machinery that lies at the core of its seeming sim-
plicity. Here the central notion is that of observable structures. Its name suggests
a correspondence with the quantum observables discussed previously and while
this specific application will be encountered below, we move on with the general
algebraic definition.

Before this, we need some background in abstract algebra, specifically the
concept of monoids. A monoid is a triple (A, ⋆ ∈ A×A→ A, e ∈ A) consisting of
some set A, a binary operator ⋆, and a special element e. On the binary operation
in this triple, we place the requirements of associativity and that e is its left and
right unit, as shown for a, b, c ∈ A in (1.31).

(1.31) a⋆(b⋆c) = (a⋆b)⋆c e⋆a = a = a⋆e

Further, for purposes which will become clear later, a commutative monoid is
a monoid (A, ⋆, e) such that for a, b ∈ Awe have a⋆b = b⋆a.

These concepts have a natural correspondence in the categorical setting, defin-
ing these concepts as internal to a monoidal category C. Firstly, an internal com-
mutativemonoid is defined as the triple (A,m, e)withA ∈ Obj(C),m : A�A→ A

called the multiplication and e : I → A its unit, placing similar restrictions as in
the algebraic case, shown below.

m ◦ (m� 1A) = m ◦ (1A �m)(1.32)
m ◦ (e� 1A) ◦ λ−1A = 1A = m ◦ (1A � e) ◦ ρ−1A(1.33)

m ◦ σA,A = m(1.34)

We can also define an internal cocommutative comonoid here, which is the in-
ternal commutative monoid but with the arrows of its morphisms reversed. It is
a triple (A, δ, ε), with A again an object, δ : A → A � A as the comultiplication,
and ε : A→ I as the counit, along with its restrictions.

(δ� 1A) ◦ δ = (1A � δ) ◦ δ(1.35)
λA ◦ (ε� 1A) ◦ δ = 1A = ρA ◦ (1A � ε) ◦ δ(1.36)

σA,A ◦ δ = δ(1.37)

Whenworking in a category equippedwith the †-functor, we can identify the
internal comonoid with the adjoint of the internal monoid such that e = ε† and
m = δ† and vice versa. With these definitions, we are ready to present observable
structures.
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Definition 1.1.9 (Observable structure). An observable structure is a triple:(
A , δ = : A→ A�A , ε = : A→ I

)
With string diagram representations as above, such that it:

(i) is a cocommutative comonoid (equations (1.35)-(1.37))

(1.38) = = = =

Coassociativity Counital elimination Cocommutativity

(ii) satisfies the Frobenius law, i.e. (1A � δ†) ◦ (δ� 1A) = δ ◦ δ†

(1.39) =

Frobenius law

(iii) is special, i.e. δ† ◦ δ = 1A

(1.40) =

Speciality

Where the graphical representation of the internal commutativemonoid δ, is
the one for the comonoid reflected horizontally. We can further define a new type
of algebraic structure by combining the monoid and comonoid into one, defining
the quintuple (A,m : A � A → A, e : I → A, δ : A → A � A, ε : A → I).
Any structure of this form satisfying the Frobenius law (1.39) is called a Frobenius
algebra. Thus, for the †-SMC of FdHilb, we can identify observable structures with
†-special commutative Frobenius algebras. The final condition of speciality in the
definition above corresponds exactlywith the normalisation condition of the basis
vectors of the observable structure. [16]

As noted in [16], observable structures in FdHilb correspond precisely to an
orthonormal basis for a Hilbert space H. We will attempt to explain this shortly.
The comultiplication δ and the counit ε of an observable structure can be associ-
ated with operations that respectively uniformly copy and erase a set of orthog-
onal basis vectors. We show the action of these operators in equations (1.41) and
(1.42), written in terms of a set of basis vectors {|ϕi〉} ∈ H.

δ : A→ A�A := |ϕi〉 7→ |ϕi〉 � |ϕi〉(1.41)
ε : A→ C := |ϕi〉 7→ 1(1.42)
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Looking at the copying function δ. We can see that it encodes information
about the basis associated with the observable structure, copying a state perfectly
onlywhen that state is a basis vector. For this reason, the comultiplication is said to
uniquely capture the basis vectors of the observable structure to which it belongs.
Thus in FdHilb, we can associate with every observable structure an orthogonal
basis.

An observable structure induces what is called a compact structure. If per-
mitting the †-operator, the dual pair can also be derived. We present its full defi-
nition, with this dual pair below.

Definition 1.1.10 (†-compact structure). A †-compact structure is a tuple:

(A, η : I→ A�A = )

Such that:

(1.43) λA ◦ (η† � 1A) ◦ (1A � η) ◦ ρ†A = 1A =

(1.44) σA,A ◦ η = η =

Being induced by the definition of its observable structure, the compact struc-
ture can be defined as in (1.45).

(1.45) η := δ ◦ ϵ†
A

A
:=

A

A

Note that this induced compact structure is internal, i.e. not the same as
ηA : I→ A∗ �A as introduced for †-compact categories. Though that their name
and symbol are the same is not a coincidence. For the canonical example of the ZX-
calculus, the induced †-compact structures of the Z and X observable structures
both have the same interpretation in Hilbert space as ηA, given the same objectA.
They are also subject to the same requirements, the conditions being placed on
the †-compact structure above being precisely the ones in a †-compact category.

So far, we have only considered the single observable structure. We showed
that these coincided firstly with a complete orthonormal set of basis vectors in a
Hilbert space, as well as coinciding with a special commutative †-Frobenius alge-
bra [2]. Wewill now consider the interaction ofmultiple of these observable struc-
tures, covering complementarity of observable structures and a number of the
consequences that follow from complementarity. We begin with defining what is
meant by complementary observable structures.
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Definition 1.1.11. (Complementarity) Two observable structures

(1.46) Z :=
(
A, δZ = , ϵZ =

)
X :=

(
A, δX = , ϵX =

)
are complementary if there are morphisms

(i) z : I→ A that is copied by X and unbiased for Z, and
(ii) x : I→ A that is copied by Z and unbiased for X.

Asmentioned in section 1.1.4.2, morphisms of the formof z, x generate points.
In the context of observable structures, points are generated relative to these. The
above definition thus tells us that Z and X are complementary if the unit eZ = ε†Z
of Z is copied by the comultiplication of X and vice versa (1.47); and further that
the unit of Z is unbiased to Z and vice versa. Wewill however leave the discussion
of unbiased points for later.

(1.47) δZ ◦ ε†X = ε†X � ε†X =

Returning shortly to the concrete case of FdHilb. We saw previously that the
comultiplication uniquely captures the basis vectors of its observable structure.
That is, it produces two copies when acting on a basis vector. This is the concrete
version of the main statement presented above. Two observable structures are
thus complementary if the unit of the one generates a basis vector from the basis
of the other.

We wish to present two further algebraic relations that follow from comple-
mentarity. However, as these will not be as relevant for the remaining thesis, we
will only mention them shortly. The first of these being the Hopf law, shown in
(1.48). This relation further relies on coinciding compact structures, i.e, ηZ = ηX.
For coinciding compact structures, it can be shown [2] that the complementarity
of two observable structures follows from the Hopf law.

(1.48) δ
†
Z ◦ δX = εZ ◦ ε†X =

A stronger form of complementarity ⁴ that applies to complementary observ-
able structures is the Bialgebra rule shown in (1.49).

(1.49) δX ◦ δ†Z = (δ†Z � δ†Z) ◦ (1A � σA,A � 1A) ◦ (δX � δX) =

⁴In the sense that a bialgebra of observables inherently satisfies the Hopf law. That is, any
bialgebra of observable structures satisfying the bialgebra rule can be shown to satisfy the Hopf
law.
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1.1.5.2 Unbiased points and phase groups

We wish to introduce what together with the topics introduced above will lead
to a full derivation of relevant parts of the ZX-calculus, unbiased points and the
phase group. Both of these definitions come from the need to describe quantum
computation in terms of Hilbert spaces, and as such, their definition in the cate-
gorical language may not seem entirely clear. We will try our best to refer back
to Hilbert spaces where we can, to give the reader some intuition of where these
concepts stem from.

Before moving on, we hope to provide some intuition regarding unbiased-
ness in the concrete case. For any vector basis {|ϕi〉}, a vector given as a linear
combination of these such as |ψ〉 :=

∑
i ci |ϕi〉, for some set of scalars {ci} is unbi-

ased relative to this basis if

(1.50) |〈vi|ψ〉| = |〈vj|ψ〉|

for all i, j. This projection of ψ onto the different basis vectors can be interpreted
as a post-selection. From this, (1.50) tells us that the amplitudes ofψ are the same
relative to every basis vector of that basis. It is unbiased relative to that basis.
Physically this means that every outcome of a measurement of this state in that
observable is equally likely.

Returning to the general case of an observable structure (A, δ, ε) in a †-SMC
C. We refer to the set of morphisms in HomC(I,A) as the set of points (corre-
sponding to states in the concretisation) of this category. Graphically, we denote
an arbitrary point ψ : I→ A as a black node with edges, as in (1.51).

(1.51) ψ

These edges denote that this point may be sensitive to conjugation, that ψ∗

may not necessarily equal ψ. Extending this notation to unbiasedness, we denote
an unbiased point α relative to some observable structure as a node with edges,
of the same colour as the observable structure. To define unbiasedness in the
categorical language we have the following. A point α is unbiased relative to an
observable structure (A, δ, ε) if δ† ◦ (α∗ � α) = ε†, up to normalisation. Here,
(−)∗ represents conjugation in the sense of definition 6.17 in [2]. The statement is
shown as a diagram in (1.52).

(1.52) =
α

α

Now to define the phase group. The intuition of this construction is most
clear when we refer back to the ZX-calculus, where the phase groups of each of
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1. Introduction

the observables are the rotation operators around their axes on the Bloch-sphere.
Here, we wish to define this concept in an abstract categorical setting. We begin
by defining a multiplication on points Λ(ψ) in (1.53).

(1.53) Λ(ψ) := δ† ◦ (ψ� 1A) :=
ψ

ψ

This is then themultiplication of some observable structure, with some point
ψ. The relationship between this construction and unbiased points is found in
proposition 7.18 of [2], that a point α is unbiased to some observable structure
if the multiplication on points Λ(α) of the same observable structure is unitary.
From this, we get the fact that the multiplication on unbiased points of some ob-
servable structure is always unitary, and this is the phase group.

With these definitions, the observable structures, unbiased points, and the
phase group, we can finally recover the spider of the ZX-calculus. We show its
definition in (1.54).

(1.54) α
...

... := α
. .
.

...
. .
.

...

Simply put, a spider is constructed from its observable structure by a number
of stacked multiplications as inputs, followed by a phase group with some unbi-
ased point, and a number of stacked comultiplications on its output. The specific
conditions on observable structures outlined earlier each implies important prop-
erties of the spider, which we will not cover here. These properties, together with
rules from complementarity, and rules specific to the Hadamard transform, make
up the elements and rules of the ZX-calculus. Much has been left out here, as we
only cover what’s necessary for the comprehension of the thesis, but it is safe to
say tf � G(; B) a � A Γ � f a terhat the brilliant simplicity of the ZX-calculus is backed
by an incredible formal categorical machinery. We hope that we have made it
some justice.
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Theory

At dawn my lover comes to me
And tells me of her dreams
With no attempts to shovel the glimpse
Into the ditch of what each one means
At times I think there are no words
But these to tell what’s true
And there are no truths outside the Gates of Eden

B. Dylan

WE introduce in this chapter the definition of the ζ-calculus. This language is
an extension of the internal language of symmetric monoidal closed cate-

gories ΛSMC with constructs related to ones presented for observable structures.
The intention of this extension is twofold.

Firstly, the main application of the ζ-calculus should be seen as a functional
quantum programming language. As such, we rely on the categorical framework
introduced by Coecke and Duncan [2], of complementary quantum observables
for the same concretisation as the ZX-calculus. This is achieved by making the
underlying category concrete in finite-dimensional Hilbert spaces, FdHilb, and
by employing the observable structures Z and X. Their respective phase groups,
rotation about the axes of the Bloch sphere, serve as the basic operations to be
applied to quantum states in the language. However, the framework is more gen-
eral than the specific instances of the Z and X spin observables, and as such, so
is the ζ-calculus. We define the language in an abstract way here, referring to
categorical and algebraic structures, which we then make concrete for quantum
programming in the next chapter.

Secondly, in contrast to ΛSMC, we intend the language to be non-linear. This
direction is understandably contentious in the quantum programming language
community, due to the no-cloning theorem [17]. This theorem states that it is im-
possible to create independent and identical copies of quantum states. Because
of this fact, many quantum programming languages have employed linear type
systems to disallow the duplication and discarding of terms that represent quan-
tum states. Examples of these languages include Selinger and Valiron’s quantum
λ-calculus [18], QWIRE [19], and Quipper [20]. There is, however, another way to
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interpret duplication in quantum languages called sharing. This operation acts on
an arbitrary quantum state in some basis {|b0〉 , |b1〉} as described in (2.1).

(2.1) α |b0〉+ β |b1〉 7→ α |b0b0〉+ β |b1b1〉

The ”copies” produced by this operation are not independent of each other,
as they are possibly entangled. We feel that this should not necessarily be seen as
a drawback, if allowed. For example, the use of sharing allows the programmer to
express multi-qubit gates that use control without a predefined gate set or explicit
control structures. It also allows one to define interesting higher-order functions.
We will present both of these examples in the next chapter.

Before moving on to the definition of the ζ-calculus we need to define the
explicit category we are defining our language in. We start by building upon the
symmetric monoidal closed category of ΛSMC. We further restrict the category
to be compact closed. This means that we use dual types and the morphisms
ηA : I → A∗ � A and η†A : A � A∗ → I (we use the name η† instead of its usual
name ϵ to avoid confusion with the counit of an internal comonoid, even though
we are not working in a †-SMC). With this, we can define the internal morphism
for somemorphism f : A→ B as dfe : I→ A∗�B. Whenwe present the semantics
of the ζ-calculus this will allow us to provide a clear graphical interpretation of
abstraction and application as string diagrams, where η and η† are on the form
(2.2). From this, we can move from the abstract categorical presentation of the
ζ-calculus to the ZX-calculus in a clearer manner.

(2.2) ηA :=
A

A∗
η
†
A :=

A

A∗

The ZX-calculus is defined in a †-symmetric monoidal category. The reason
for us not presenting an internal language for †-SMC’s stems from the difficulty of
defining semantics which take the †-functor into account. This is possible though,
an example of such a language is the dagger λ-calculus [21]. We will discuss the
possibility of extending the ζ-calculus in this direction in the futureworks section.
With these formalities clarifiedwemove on to the definition of the ζ-calculus. This
will be presented in the sections: syntax, typing, and semantics.
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2.1 Syntax
We extend the internal language of symmetric monoidal categories (ΛSMC) given
in section 1.1.4.3 with a modification on the terms which introduce variables. We
fix a set of symbols b whose elements we call bases or observable structures. The
usual λ-abstraction is further decorated with a basis in which the variable is intro-
duced. This is a basis-abstraction (or ζ-abstraction) on the form ζxM, where ζ ∈ b
corresponds to some observable structure. The let-expression concerning tuples
is also decorated with a basis. As previously noted, each orthonormal basis in a
Hilbert space corresponds to an observable structure, and we will use the terms
somewhat interchangeably. The minimal syntax of the ζ-calculus, the set of ζ-
terms bzc¹ (algiz), is defined inductively over a set of observable structures (or
bases) b in figure 2.1.

x ∈ bzc
VAR

⋆ ∈ bzc
UNI

ζ ∈ b M ∈ bzc
ζxM ∈ bzc

ABS

M ∈ bzc N ∈ bzc
MN ∈ bzc

APP
M ∈ bzc N ∈ bzc

〈M,N〉 ∈ bzc
TUP

ζ ∈ b M ∈ bzc N ∈ bzc
let 〈x, y〉 =ζ M in N ∈ bzc

LET
M ∈ bzc N ∈ bzc

M #N ∈ bzc
SEM

Figure 2.1: The minimal syntax of the ζ-calculus.

This syntax is the minimal extension of ΛSMC for our purposes of making
the language non-linear by use of observable structures. In the remainder of this
section, we will introduce the full syntax of the ζ-calculus, denoted by the set
z. The extensions we provide further utilise constructs built upon observable
structures, phase groups, used for providing a notion of rotation. Moreover, we
introduce sized units and counits to act as values in the language. These additions
make the ζ-calculus appropriate for use as a programming language, which we
will provide examples for later.

¹A variant on the rune for Z, coincidentally looking like a spider.
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2.1.1 Phase groups and rotation

To capture the description of processes presented in the ZX-calculus we wish to
add some notion of rotation to the ζ-calculus. Thus, for each ζ ∈ b we fix a set
of symbols Uζ, whose elements we call unbiased points (see section 1.1.5.2 for an
overview). Then we further decorate the ζ-abstraction by some unbiased point α.

(2.3)
ζ ∈ b α ∈ Uζ M ∈ z

ζαxM ∈ z
ABS

This represents a phase shift relative to the observable structure used in the
abstraction. Without concretising the observable structures to some particular
structure, Hilbert spaces for example, this notion is rather abstract. We refer to
alpha as being a point in the set of unbiased points Uζ, which generate the group
of phase shifts relative to ζ. Later, when we study the ζ-calculus as a quantum
programming language this set is parameterised by a phase α ∈ [0, 2π), gener-
ating a group of rotations about the two axes, Z and X, of the Bloch sphere that
the observable structures in the 2-dimensional complex Hilbert space represent.
Intuitively then, the ζ-abstraction ζαxM should be seen as a function that intro-
duces a variable in the basis ζ, rotating it about ζ with phase α before passing it
onto the termM.

We have a special element u ∈ Uζ for each ζ ∈ b (in the semantics u will be
interpreted as the unit of the internal monoid of the observable structure ζ). For
a ζ-abstraction ζuxM we omit the unbiased point and write it as ζxM.

2.1.2 States and effects

To complete the syntax we add a syntactic construct for states and effects, called
a generator. States here represent points HomC(I,A) in the category, generated
by some observable structure (A, δ, ϵ). Effects are simply the adjoint of states
(HomC(I,A))

† = HomC(A, I), representing a function which simply discards. We
give the syntactic introduction rule for generators in (2.4).

(2.4)
ζ ∈ b α ∈ Uζ n ∈ Z

ζαn ∈ z
GEN

This generator is decorated with the observable structure ζ, an unbiased
point α, and a size n. The size decoration represents the number of times the
base point is duplicated by the comonoid of ζ, where a positive integer repre-
sents a state, a negative integer represents an effect, and zero represents a point
HomC(I, I), called a scalar.
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2.1.3 The complete language
With the addition of rotations, states, and effects we obtain a language that cap-
tures the desired properties of the ZX-calculus for use as a functional language.
We present the complete syntax of the ζ-calculus in figure 2.2.

x ∈ z
VAR

⋆ ∈ z
UNI

ζ ∈ b α ∈ Uζ n ∈ Z
ζαn ∈ z

GEN

ζ ∈ b α ∈ Uζ M ∈ z
ζαxM ∈ z

ABS
M ∈ z N ∈ z

MN ∈ z
APP

M ∈ z N ∈ z
〈M,N〉 ∈ z

TUP
ζ ∈ b M ∈ z N ∈ z
let 〈x, y〉 =ζ M in N ∈ z

LET

M ∈ z N ∈ z
M #N ∈ z

SEM

Figure 2.2: The full syntax of the ζ-calculus.

Finally, we define the canonical meta-operations on the syntax. Both free
variable calculation and substitution, as described in section 1.1.2, are extended
to the syntax of the ζ-calculus in the obvious way. We always identify terms up
to α-equivalence, meaning that we consider terms syntactically equivalent when
we can make them equal by a change of bound variable names. We denote this
syntactic equivalence byM ≡ N.

2.1.4 Notational conventions
Wedefine here a set of syntactic conventionswhichwewill use throughout the rest
of the thesis. Their definitions differ slightly in their usage and intuition, coming
from properties of the categorical constructs, or simply for ease of writing. The
notational conventions are defined in figure 2.3.

The first row of definitions rely on two simple facts, which we touched upon
briefly when introducing phase groups to the syntax. Since the unit of some ob-
servable structure is always an unbiased point, it can always be used in the phase
of a ζ-term. Then, by unital elimination of the monoid, and the definition of the
phase group, the rotation equals the identity. This is described in the graphical
language in (2.5).

(2.5) u = =
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ζxM :≡ ζuxM ζn :≡ ζun (∗)
λxM :≡ ζuxM let 〈x, y〉 = N inM :≡ let 〈x, y〉 =ζ N inM (∗∗)
M ◦N :≡ λxM(Nx) ζ̂α :≡ ζαxx

ηζ :≡ ζ2 η
†
ζ :≡ ζ92

〈M,N, L〉 :≡ 〈M, 〈N,L〉〉 ζα〈x, y〉M :≡ ζαt let 〈x, y〉 =ζ t inM

(*) u is the unit of the commutative monoid of ζ
(**) The introduced variables each occur exactly once inM

Figure 2.3: Definition of notational conventions.

The second row describes linear ζ-terms, terms where the variables intro-
duced in them are used exactly once. Since these variables, introduced in some
basis, are only used once, we do not need to share or discard them. Then, the
observable structure they are introduced in does not matter, since its internal op-
erations are never called upon. This means that it does not matter in which basis
the variable is introduced in, and we can refer to any abstraction defined like this,
as a λ-abstraction, and the variables as introduced in the λ-basis. This really only
means that the basis is arbitrary, since it is not used.

The three final rows describe constructs that are employed frequently when
using the ζ-calculus as a programming language. The first of these defines the
usual composition function, and the identity function in some basis and rotation.
The second one defines the compact structure related to some observable struc-
ture, see proposition 6.15 of [2] for a discussion on this. Certain collections of ob-
servable structures have compact structures which coincide (meaning that they
are all equal), principally this is the case for the set used in the ZX-calculus. In the
case that all observable structures in b have mutually coinciding compact struc-
tures, we omit the basis from the notation (though this depends on the model,
rather than the syntax, we wish to bring it up here to collect the notational con-
ventions in one place). Finally, we accept some common conventions regarding
the tuple construction. We taken-tuples to be right-nested tuples (by associativity
of the tensorial functor), and allow tuples to be accepted as arguments.
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2.2 Typing
In this section, wedefine logical rules of the ζ-calculuswhich assign a type to every
ζ-term. This type system is extended from the one presented in section 1.1.4.3
with the addition of the structural rules of contraction and weakening. Recall
that contraction and weakening are the structural rules which are omitted from a
linear type system, as they allow variables to be freely duplicated and discarded.
Wewill present in this section the addition of the observable structures that allows
for these rules to be defined. The set of types is defined in figure 2.4.

I ∈ Type T ∈ Type
A ∈ Type B ∈ Type

A� B ∈ Type
A ∈ Type B ∈ Type

A→ B ∈ Type

Figure 2.4: Definition of types.

As in section 1.1.4.3 we have the unit type I, the product type �, and the
function type→ (the non-linear function typewill be used here instead of(). The
type T represents the object of any of the observable structures. In an instance of
the ζ-calculus, every observable structure will be defined over the same base type
T , the canonical example being C2 in FdHilb. For the sake of conciseness when
defining the typing rules for generators we define the notion of a sized type.

Definition 2.2.1 (Sized types). A sized typed n where n ∈ Z is defined by:

0 := I 1 := T n+ 1 := n� T 9n := n→ I

Contexts are defined similarly to all the previously presented type systems,
with the addition of keeping track of which observable structure a variable has
been introduced in. The grammar of contexts is then defined as Γ ::= ∅ | Γ, x :ζA.
Now we move on to the structural rules we wish to define. We keep the exchange
rule from ΛSMC, and extend the rules of that language by adding weakening and
contraction. In these cases, we use the basis-decorated contexts to keep track of
which observable structure duplication and discarding occurs. The full set of
structural rules is presented in figure 2.5.

Γ `M : B

Γ, x :ζA `M : B
W

Γ, x1 :ζA, x2 :ζA `M : B

Γ, x :ζA `M[x1 := x, x2 := x] : B
C
Γ, x :ζA,y :ξB,∆ `M : A

Γ, y :ξB, x :ζA,∆ `M : A
X

Figure 2.5: Structural rules of the ζ-calculus.

Finally, define the typing rules of the language. From the rules presented in
section 1.1.4.3 we add the rule (G) concerning generators. The version presented
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here, with separate structural rules, still uses the split contexts of ΛSMC, making
the contractions explicit in the definition of the semantics in the next section. The
syntax-directed set of typing rules can be found in appendix B. The full set of
typing rules are now presented in figure 2.6.

` ⋆ : I
U

x :ζA ` x : A
V

` ζαn : n
G

Γ, x :ζA `M : B

Γ ` ζαxM : A→ B
B

Γ `M : A→ B ∆ ` N : A

Γ,∆ `MN : B
A

Γ `M : A ∆ ` N : B

Γ,∆ ` 〈M,N〉 : A� B T

Γ `M : A� B ∆, x :ζA,y :ζB ` N : C

Γ,∆ ` let 〈x, y〉 =ζ M in N : C
L

Γ `M : I ∆ ` N : A

Γ,∆ `M #N : A
I

Figure 2.6: Typing rules of the ζ-calculus.

From these rules, we see more clearly why the rules which introduce vari-
ables (B, L) are decorated with some observable structure ζ. Namely, this is used
to extend contexts with the observable structure denoted in the terms.
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2.3 Semantics

AmodelZ(C, b) of the ζ-calculus consists of a symmetric compact monoidal cate-
gory C and a set of observable structures b. Each observable structure (T , δζ, ϵζ) ∈
b is defined over the same base type T . We give the semantics for the ζ-calculus by
mapping every derivable judgement to a morphism in the underlying category,
described by a labelled string diagram. Every type is translated to an object of the
category according to the interpretation presented in (2.6).

(2.6) JIK := I JT K := T JA� BK := JAK � JBK JA→ BK := JAK∗ � JBK
The intention is that a derivable judgement Γ ` M : A will be mapped to a

diagram whose open input wires are labelled by the elements of the labels of JΓK,
and whose open output wire are labelled by the elements of the labels of JAK. The
string diagrams presented in the semantics of the ζ-calculus flow from left to right.
We relate each construct presented in the string diagrams to their counterparts in
the categorical language in figure 2.7.

x :ζA A := 1A
A

A∗
:= ηA

A

A∗ := η
†
A

:= I
x :ζA
y :ξB

B

A
:= σA,B α := Λζ(α)

α
... n := α

. .
.

...
n := δζ := ϵζ

Figure 2.7: The translation between string diagrams and the categorical con-
structs.

We define the interpretation of a derivable judgement on the induction of
its derivation. We begin by giving the interpretation of the structural rules pre-
sented in the previous section. Each of the interpretations of the structural rules
are presented in figure 2.8.

Γ
y :ξB
x :ζA
∆

CM

Γ, x :ζA,y :ξB,∆ `M : C

Γ, y :ξB, x :ζA,∆ `M : C
X

Γ, x1 :ζA, x2 :ζA `M : B

Γ, x :ζA `M[x1 := x, x2 := x] : B
C

Γ

BM
x :ζA

Γ `M : B

Γ, x :ζA `M : B
W

Γ BM

x :ζA

Figure 2.8: Interpretation of structural rules.
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α

` ⋆ : I
U

x :ζA ` x : A
V

A

` ζαn : n
G

n

Γ, x :ζA `M : B

Γ ` ζαxM : A→ B
B

α A∗

BΓ M
x :ζA

Γ `M : A→ B ∆ ` N : A

Γ,∆ `MN : B
A

B

Γ N

M

A

A∗

Γ `M : A ∆ ` N : B

Γ,∆ ` 〈M,N〉 : A� B T

A

BN

M

Γ `M : A� B ∆, x :ζA,y :ζB ` N : C

Γ,∆ ` let 〈x, y〉 =ζ M in N : C
L

M
C

...

Γ

x :ζA

Γ

∆

∆

∆

Γ `M : I ∆ ` N : A

Γ,∆ `M #N : A
I

AN

MΓ

∆

N

Figure 2.9: The semantics of the ζ-calculus.

Note that we write the counit and comultiplication with inputs and outputs
labelled by general types. We have that the counit and comultiplication scale ap-
propriately over the types, as in proposition 6.28 of [2]. We give this scaling over
the tensor type in (2.7). The remaining types remain either unchanged, as for the
dual type and base type, or correspond to empty diagrams, as for the unit type.

(2.7)
A

B

A

B

A

B

A� B A� B
A� B =

A

B
A� B =

With this, we move on to the definition of the full semantics. We give, for
each rule in figure 2.6, an interpretation as a labelled string diagram, as for the
structural rules. The interpretations of the typing rules are presented in figure
2.9.
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Each box containing a typing rule and a diagram is intended as the statement
that the diagram is the interpretation of that rule, something which we will also
write later when describing substitution. When writing derivations graphically
we denote an instance of a rule by a dashed box with the rule name in its corner.
Take for example the type derivation for the term ζαx〈x, x〉, given in (2.8).

(2.8)

x1 :ζT ` x1 : T
V

x2 :ζT ` x2 : T
V

x1 :ζT , x2 :ζT ` 〈x1, x2〉 : T � T
T

x :ζT ` 〈x, x〉 : T � T
C

` ζαx〈x, x〉 : T → T � T
B

Note that this derivation uses contraction once, in the (T) rule, to duplicate
the variable x. We see the instance of contraction in the interpretation of the term
as a diagram in equation 2.9.

(2.9)
α

V

V

T

C

B
T ∗

T

T

Since this is a closed term, it has no input wires in the outermost box, note
however the instance of contraction as the comultiplication and its output being
transferred to each of the contexts for the variables. This is a small example of the
semantics of the ζ-calculus, intended to help the reader understand the process
of translation of ζ-terms into diagrams. In later chapters we will look at various
examples of ζ-terms and their graphical interpretations, there we hope that the
intuition of these interpretations will become clearer.

2.3.1 Substitution
In the next section, wewish to define some notion of reduction for the calculus. To
do this we first need to definewhat substitutionmeans semantically. This is trivial
in the linear case, the details of how this can be done is found in the presentation of
ΛSMC byMackie et al. [1]. When extending this to the non-linear case we have one
central problem: not every term is perfectly duplicated by sharing. This is expected,
of course, as it is a consequence of a widely known fact of quantum states, the
no-cloning theorem. For us, this means that we cannot simply substitute every
term which is shared, and we have to place some restriction on substitution.
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This is common for languages that employ sharing, one example being the
linear-algebraic λ-calculus (Lineal) byArrighi andDowek [22]. In Lineal,β-reduction
is only defined for basis vector terms, which are either variables or abstractions.
Unlike Lineal, the ζ-calculus does not have a notion of a preferred basis, rather
allowing explicit control of bases through observable structures. Thus, to define
substitution we also define a condition on which to restrict it, which is depen-
dent on an observable structure. We call this condition commutation with sharing
(c.w.s.).

Definition 2.3.1. Let Γ `M : A be a derivable judgement, and ζ be a basis. Then
we sayM commutes with sharing over ζ iff

MΓ = KΓ
M

M

A

A

A

A

Where K² (kaun) is the operation that shares every variable of a context in the
basis it is introduced in and sorts them appropriately, as described by (2.10).

(2.10) K
Γ M

M

A

Ax :ζB

KΓ
M

M

A

Ax :ζB

:=

For example, for a judgement x1 :ζ1 B1, x2 :ζ2 B2, x3 :ζ3 B3 ` M : A, we would
apply K on its context to two instances of the interpretation of the judgement as
in (2.11).

(2.11) K
M

M

A

Ax3 :ζ3B3
=x2 :ζ2B2

x1 :ζ1B1
M

Mx3 :ζ3B3

x2 :ζ2B2

x1 :ζ1B1 A

A

ζ1

ζ2

ζ3

Note that this operation can be performed on any context since every variable
in a context is always decorated by the observable structure which was used to
introduce it.

²A rune, once again, which looks like a wire branching.
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Lemma 1 (Substitution). Let Γ, x :ζA,∆ `M : B, and Θ ` N : A. If N c.w.s over ζ:

Θ

Γ

∆

BMN

Γ,Θ,∆ `M[x := N] : B

Proof. We prove the statement for Γ, x1 :ζ1 A1, . . . , xn :ζn An, ∆ `M : B, and judge-
mentsΦi ` Ni : Ai, whereNi c.w.s over ζi, which subsumes the above. The proof
is by induction on the derivation of Γ, x1 :ζ1 A1, . . . , xn :ζn An, ∆ ` M : B. We
show the cases for which the derivation ends with the application of contraction
or weakening on one of the xi.

Case (W): Let xi be the variable introduced, then the interpretation is:

(2.12)
Θi

∆

M BNi

NnΘn

...
ζi

Γ

N1Θ1
...

IH

We apply the induction hypothesis on the premise of the weakening to ob-
tain Γ,Θ1, . . . , Θn, ∆ ` M[x1 := N1, . . . , xn := Nn] : B without Θi ` Ni : Ai.
Since xi is introduced by weakening, xi /∈ fv(M), and it is not substituted.

Case (C): Let xi be the duplicated variable, then the interpretation is:

(2.13) Θi

∆

M B
Ni

Ni

KΘi

∆

M BNi =

NnΘn

...
NnΘn

... ζi

Γ

N1Θ1
...

Γ

N1Θ1 ...

IH

Since Ni c.w.s over ζi we have the above, on which we apply the induction
hypothesis.
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2.3.2 Reduction
Now we move on to the definition of a notion of reduction. Using the definition
of the λ-basis in the notational conventions (figure 2.3), we embed the reductions
of ΛSMC for that basis. This is not a basis in the usual sense, one defined by an
observable structure, but a notational convention for the observation that if a vari-
able introduced by some basis is only used once, it does not matter what the basis
was. This is because neither the counit nor the comultiplication is employedwhen
a variable is used exactly once, and thus no terms need to commute with sharing
to be substituted. For the ζ-calculus, this means that we have an embedding of
the linear λ-calculus in the notational conventions, with the corresponding reduc-
tions. This set of reductions is then extended for the minimal syntax bzc, where
we use the c.w.s. condition of lemma 1 to define β-reductions. This is presented
in figure 2.10.

⋆ #M→β M M # ⋆ →η M

let 〈x, y〉 = 〈M,N〉 in L→β L[x :=M,y := N] let 〈x, y〉 =M in 〈x, y〉 →η M

let 〈x, y〉 =ζ 〈M,N〉 in L (∗)→β L[x :=M,y := N] let 〈x, y〉 =ζ M in 〈x, y〉 →η M

(λxM)N→β M[x := N] λxMx→η M

(ζxM)N
(∗∗)→β M[x := N] ζxMx

(∗∗∗)→ ηM

(*)M and N c.w.s. over ζ
(**)M c.w.s. over ζ
(***) x 6∈ fv(M)

Figure 2.10: Reduction rules of the ζ-calculus.

The rules for η-reduction follow directly from ΛSMC with the addition of the
usual requirement (***), that x /∈ fv(M). For the linear cases, where variables
introduced are used exactly once and no rotation is applied, we have the usual
β-reductions. The other cases for ζ-abstractions have the requirement of commu-
tationwith sharing. Because of this requirement being a semantic one, dependent
on the model, the reduction relation also depends on the model that is employed.
This is also why the reduction relation is defined on the minimal syntax, because
the rules associated with the phase group introduced for the full syntax depend
on the model. The combined notions of reduction β∪η have their reduction rela-
tion written as→βη. We wish to have some notion of soundness for this combined
reduction, that it preserves the semantics of the terms involved. For this reason,
we prove the following theorem.
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Theorem 1 (Subject reduction). Let Γ `M : A andM→βη N, then Γ ` N : A and

JΓ `M : AK = JΓ ` N : AK
Proof. By induction on the reduction M →βη N. We will show two cases, the β
and η rule for the ζ-abstraction.

Case 1: ((ζxL)P →β L[x := P]) This gives a derivation diagram on the form (2.14),
where Γ = ∆ ∪Φ.

(2.14)
L

P
A

B

∆

Φ A
x :ζB

Φ

A

P∆
L=

From the condition (∗∗) of this reduction case, that P c.w.s. over ζ, we apply
lemma 1, which gives the interpretation of the β-reduct.

Case 2: (ζxLx→η L) From the condition (∗), that x 6∈ fv(L), we get the derivation:

(2.15)
L

V
Ax :ζB

B

Γ

B∗

C

LΓ
C

B∗
=

Where the output type is A = B → C. Then, by yanking the variable x, we
have the interpretation of the η-reduct.

The linear cases are trivial since they do not employ anyweakening or contraction
on the variables introduced, and can be substituted immediately. The cases for β-
reduction on let-expressions use the same method as employed for β-reduction
here. Lastly, the cases for ⋆-eliminations employ the unitors of the underlying
category.
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This concludes the definition of the notions of reduction for the calculus. We
would like to note that these reduction relations are not complete, and they do not
involve the full syntax as we previously described. It is possible to use the prop-
erties of observable structures in [2] to define other reductions. Principally, the
properties of interest are classical points and unbiased points. Classical points of
some observable structure ζ, are closed terms that always commute with sharing
over ζ. In the next chapter, we will show examples of these in the complementary
observable structures of the ZX-calculus. Unbiased points, which are included
in the full definition of the syntax, do not commute, and would as such need
another notion of rewriting to be included in the notions of reduction. We will
discuss these weaknesses and what needs to be worked on to make this reduction
relation strong in later chapters.

2.3.3 Externalisation of closed ζ-terms

When using the ζ-calculus as a programming language, we will focus heavily on
the set of closed ζ-terms z∅, that is terms which contain no free variables. These
are the terms whose interpretation does not rely on any context, and as such, are
directly compilable. Looking at the interpretation of these terms as diagrams,
they are precisely the diagrams that have no open input wires. When such a term
describes a function, a ζ-abstraction, it represents an internal morphism in the
category dfe : I→ A∗ �B, corresponding to some (external) morphism f : A→ B.
When ascribing some concrete denotation to the calculus, we would like to have
a way of looking at the closed terms in their externalised form. Therefore, we
introduce the following operation.

Definition 2.3.2 (Externalisation). Let M ∈ z∅ be a closed ζ-term. The exter-
nalised interpretationM # E is the diagrammatic interpretation J` M : AK = D
where all higher-order arguments are supplied with boxes, and the remaining
open dual output wires reversed to open input wires. The labels and boxes of the
diagram interpretation D are then removed to produce the externalised diagram.

This definition might seem somewhat ad hoc, because it is. It is not a formal
notion, but rather a way of looking at how the diagrammatic interpretations of
closed ζ-terms act upon both first and higher-order arguments. We shall try to
make its intuition clearer by example.

Take the higher-order ζ-abstraction ζf f◦f ∈ z∅, which shares some function
and composes it with itself. De-sugaring the term (expanding the definition of
composition) we have its judgement ` ζfλx f(fx) : (A → A) → A → A, with
interpretation presented in (2.16).

42



2. Theory

(2.16)

A

A∗ (A→ A)∗

V

V

A

V

A

A∗
B

C

B

A

Then, we follow the procedure from definition 2.3.2, placing a function box
on the higher-order argument, then reversing the remaining dual output wire,
and removing all rule boxes and types. Finally, we deform the diagram according
to the string diagram rules.

(2.17) A∗

A

f

 

f

f=

Thus, wewrite the externalisation of the aforementioned ζ-termas presented
in (2.18).

(2.18) ζf f ◦ f # f

This is the general procedure for presenting closed ζ-terms as string-diagrams,
other than presenting the derivation diagram itself.
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2.4 Instances, models, and concretisation
With the particulars of the theory defined we wish to make clear the language we
are going to use to describe specific ”versions” of the ζ-calculus. We previously
discussed the difference between abstract and concrete categories, ones which are
defined simply by their internal structure, and ones which refer to some specific
mathematical structure. The theory so far has been defined abstractly in symmet-
ric monoidal compact categories, while the subsequent chapter will instead em-
ploy a concrete category, the category of finite-dimensional Hilbert spaces. We
call this specification a concretisation of the category.

Whendefining a specific set of symbols in specifying the syntax of the theory,
we write z(b,Uζ∈b) for an instance of the ζ-calculus. This defines the syntax, with
the set of basis symbols defined as b, and a set of unbiased point symbols Uζ for
each basis ζ ∈ b. This notion is purely syntactic.

When specifying a notion of semantics for the calculus, we write Z(C, b) for
a model of the ζ-calculus. This consists of a concrete category C together with a set
of observable structures b in that category. The syntax for this model is defined
by a symbol for each observable structure in b, a set of symbols for the unbiased
points generated by each of the observable structures.
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Men stormar man himlen? — Den hvälft sin rund.
Högtidigt i stjärnenätter,
Långt förr än man murade Babels grund
På folkhafvets vida slätter.
Den skickat oss blixtar och stormars brus
Och gifvit oss vårregn och lett i ljus

R. Almén

MOVING on from the abstract categorical and type-theoretic language of the
previous chapterwe introduce in this chapter an application of the ζ-calculus

in concrete models. We will introduce several models of the language, with dif-
ferent sets of observable structures, though all in the concrete category of finite-
dimensional Hilbert spaces.

The first model is the quantum ζ-calculus, a functional programming lan-
guage for quantum computation. We show that the interpretation of terms in
this model are ZX-diagrams, producing a denotation of the language suitable for
both optimisation and compilation. We demonstrate unique quantum program-
ming techniques that distinguish the ζ-calculus from other quantum program-
ming languages, and give the intuitions behind them through externalisation to
the ZX-calculus.

The second instance is the spacetime ζ-calculus, where the set of observable
structures are defined by the γ-matrices of fermionic quantum field theory. We
then explore the consequences of this construction, specifically the representation
of the phase groups as rotations about the spacetime axes of the projective space
of the quaternionic Hopf fibration. This 4-sphere serves as an extension of the
projective space of the complex Hopf sphere, namely the Bloch sphere.

Finally, we derive a conjecture connecting the previous instances of the ζ-
calculus as part of a ladder of instances. We call these orders of computation, ranging
from the classical λ-calculus to an, as of yet, unexplored order two levels above
quantum computation.
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3.1 Quantum programming
In the previous chapter, we introduced the theory necessary for a language capa-
ble of describing computation in terms of observable structures in any SMC, and
while there is much strength in a description at this level of abstraction, it may
be that some of the notions introduced will be made more clear when written
in a concrete setting. We will thus in this section restrict ourselves to a particu-
lar concrete category and give an interpretation of the language in terms of the
particulars for that category. In order to obtain a language capable of describing
quantum computation, a denotation of the language will be attempted in terms of
string diagrams of the ZX-calculus. To do this, the ζ-calculus will be concretised
in the category of finite-dimensional Hilbert spaces FdHilb.

Definition 3.1.1 (The quantum ζ-calculus). The quantum ζ-calculus is the model
Z(FdHilb, {ζ, ξ}) of the theory concretised in the category of finite-dimensional
complex Hilbert spaces. The set of complementary observable structures is de-
fined as b = {ζ, ξ}, where

(3.1) ζ :=
(
C2, δZ = , ϵZ =

)
ξ :=

(
C2, δX = , ϵX =

)
The base type T of the calculus (figure 2.4) denotesC2, a standard 2-dimensional

qubit, which we shall refer to as Q. The comultiplication and counit for each of
the observable structures are the copying and erasingmaps for the computational
and Hadamard basis respectively, as defined by (3.2) and (3.3).

δZ := |00〉〈0|+ |11〉〈1| ϵZ := 〈0|+ 〈1|(3.2)
δX := |++〉〈+|+ |−−〉〈−| ϵX := 〈+|+ 〈−|(3.3)

Their respective phase groups and unbiased points are defined over a phase
α ∈ [0, 2π) in (3.4) and (3.5). These phase shifts are the rotations about the axes Z
and X of the Bloch sphere by an angle α.

ΛZ(α) := |0〉〈0|+ eiα |1〉〈1| αZ := |0〉+ eiα |1〉(3.4)
ΛX(α) := |+〉〈+|+ eiα |−〉〈−| αX := |+〉+ eiα |−〉(3.5)

The induced compact structures of these observable structures coincide, and
thus we shall denote both of the compact structures by η. This means that JηζK =JηξK = |00〉 + |11〉 and Jη†ζK = Jη†ξK = 〈00| + 〈11|. As such, when there is no
ambiguity in the interpretations of terms as diagrams, we shall write the compact
structures as cups.
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The state space associated with the phase group and its compositions is thus
given the topology of the standard unit Bloch-sphere, i.e. S2. The normalisability
condition of the Hilbert space H (see section 1.1.1.1), ensures that one need not
bother with global phases of the form eiα when writing expressions for states in
H. We will look at this more closely. A state ψ ∈ H ∼= C2 is written ψ := (α β)T

for α,β ∈ C. The normalisation condition |α|2 + |β|2 = αα∗ + ββ∗ = 1 which is
just the definition of the S3 as below.

(3.6) S3 = {z1, z2 ∈ C : z1z
∗
1 + z2z

∗
2 = 1}

While states of the form of ψ are usually represented on the Bloch sphere,
this is only the projective space of such states with the total space of such states
being S3. The projection S3 ↪→ S2 can be performed as the composition of two
conformal maps, the process of which is described further in [23], but we will
mention it only shortly here. The projection is composed of two maps.

(3.7) h1 : S
3 → R2 + {∞} h2 : R

2 + {∞} → S2

The first map h1 is defined as a quotient of the two complex numbers defining
a vector ψ in S3, where the quotient ensures that the global phase term factors
out. The second map h2 is an inverse stereographic map, where we finally reach
a representation of the original state ψ on the Bloch sphere.

The complex phase factor that was lost in the normalisation can be written
like eiα ∈ C. For an arbitrary α ∈ R, this term normalises to unity. From this one
can retrieve the definition for the circle, or S1, given below.

(3.8) S1 := {z ∈ C : |z|2 = 1}

The state ψ can always be written like eiαψ such that in the projection we can
identify a family of states in S3 that map to the same ψ in S2. This is an interpre-
tation[23] of the statement of the complex Hopf fibration written as

(3.9) S1 ↪→ S3 → S2 or S3
S1→ S2

which might be read as ”S3 is fibred over S2” with each fibre homeomorphic to S1
or ”S1 is embedded in S3 that projects to S2. With regard to our Hilbert space H,
this relation ascribes the non-trivial representation of states ψ ∈ H on the Bloch
sphere, with this non-triviality being encoded by the global phase freedom. It
will be extended further in later sections when we consider a base Hilbert space
of C4. The information presented and statements made with regard to the Hopf
fibration are discussed in greater detail in [23, 24].

47



3. Applications

3.1.1 The ZX-calculus
From the definition of the quantum ζ-calculus we now present the consequences
of the concretisation on the interpretations of ζ-terms as string diagrams. The con-
cretisation we presented is precisely the one used by the ZX-calculus, of FdHilb
and the two complementary observable structures, ζ and ξ. The string diagram
language of interpretations is now simplified in the following sense. With the
unbiased points parameterised over α ∈ [0, 2π)we have the relationship of conju-
gation on the phase group as described in (3.10).

(3.10) α 9α=

Because of this, which also applies to the generators of the observable struc-
tures, we omit the edges of the phase groups ΛZ(α) and ΛX(α), in favour of the
negation of the phase. Both in the ζ-terms and their interpretations we will write
the unbiased points as phases on this form.

All of the diagrams we present will be the externalised form of closed ζ-
terms, which will give a clearer understanding of how the terms act as quan-
tum programs. Since all labels are removed from the externalised diagrams, and
only with the addition of arbitrary function boxes, the diagrams presented for
ζ-terms will be the usual ZX-diagrams with the addition of these boxes. The di-
agram derivations of every non-trivial ζ-term presented in this chapter will have
its derivation presented in appendix C.

Finally, we introduce a notational convention relating to this specific model
of the theory, the Hadamard gate. As presented in [15], this gate can be defined
by decomposition to Euler angles, producing the ζ-term shown in (3.11), which
we shall call H and denote by a yellow box.

(3.11) H :≡ ζ̂
π
2 ◦ ξ̂

π
2 ◦ ζ̂

π
2 # := π

2
π
2

π
2

To recap, the interpretations of ζ-terms will be presented as ZX-diagrams
with function boxes, the externalised form of their derivations. The observable
structure ζ is presented as a green spider, while ξ is presented as a red one, both
possibly containing some phase in them. Moving on, we will present some exam-
ples of quantum programming in the ζ-calculus.

3.1.2 Examples
We will begin by stating an important property of the ζ-calculus, that it is univer-
sal for describing quantum computation. This is true by the fact that it is possible
to write terms that form a universal gate set for quantum computation. By the
Solovay-Kitaev theorem [25], any arbitrary unitary transformation can be approx-
imated by a finite number of unitary transformations from a universal gate set. It
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iswell known that any single-qubit unitary can bemodelled by a series of rotations
by decomposing it in terms of Euler angles asU(α,β, γ) :≡ Z(α)◦X(β)◦Z(γ). Us-
ing this construction together with the construction of the CNOT gate presented
below, any unitary n-qubit gate can be constructed. [26]

Theorem 2 (Quantum universality). The ζ-calculus is quantum universal.

Proof. We present the ζ-terms for the CNOT, X-shift, and Z-shift gates below.

cnot :≡ ζcξt η†〈c, t〉 # 〈c, t〉 Z(α) :≡ ζ̂α

α

X(α) :≡ ξ̂α

α

From these gates, and by the argument presented above, we have a universal gate
set. These gates, together with permutations and compositions performed in the
λ-basis, can then encode any function on a multi-qubit state.

The presentation of the CNOT gate can look somewhat strange, compared to
other quantum programming languages with explicit control structures. Its inter-
pretation, however, comes quite naturally from the style of programming allowed
by the ζ-calculus. Reading the ζ-term, it introduces the control variable c in the
Z-basis, and the target variable t in the X-basis. It then shares each of them, con-
necting the first shared variables by a cap η†, and returning the rest. The intuition
of this term then, is shown in (3.12).

(3.12) ζcξt η†〈c, t〉 # 〈c, t〉 #

Wewill now build on the intuition behind the construction of the CNOT gate
to construct general functions which link variables introduced by a ζ-abstraction
by some other function.

3.1.2.1 Linking functions

In the previous example, we demonstrated that it is possible to link variables that
are introduced in ζ-abstractions. Instead of simply connecting them by a cap,
we can place any single qubit function between them. We call the term which
connects variables by some function the linking function. For some single qubit
function f we call its linking function ℓf :≡ λ〈x, y〉 η†〈fx, y〉. Its interpretation
with a function as its argument is presented in (3.13).
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(3.13) λfλ〈x, y〉 η†〈fx, y〉 # f

We can then recover the original definition of the CNOT gate as ζcξt ℓI〈c, t〉 #
〈c, t〉, where I :≡ λxx is the identity function. The controlled Z gate is also easily
constructed by the same method, but where the variables are both introduced in
ζ and linked by a Hadamard gate, shown in (3.14).

(3.14) ζcζt ℓH〈c, t〉 # 〈c, t〉 #

More generally, we can construct a ζ-abstraction which links its arguments,
introduced in arbitrary bases, by some function before passing it onto the body of
the abstraction. The general form of the usage of the linking function is shown in
(3.15)¹.

(3.15) ξxζy ℓf〈x, y〉 #M # Mf
...

...

Where the bases that the variables are introduced in can be chosen freely, of
course.

Another class of functions which can be implemented by linking are phase
gadgets [15]. Phase gadgets are ZX-diagrams on the form of (3.16), implementing
the action of a unitary operatorUf on a string of inputs in the computational basis
|~x〉 = |x0 . . . xn〉 as |~x〉 7→ eif(⃗x) |~x〉. The function f returns some phase α only when
the input string folded over XOR is 1, defined as f(~x) := α(x0 � · · · � xn). For
example, for the input state |010〉, the function f would return f(0, 1, 0) = α(0 �
1 � 0) = α, and the action of Uf would produce the output eiα |010〉. A proper
exposition of phase gadgets, and why they are interesting, can be found in [15].

(3.16)

...

α

We can define such a gadget as a ζ-abstraction by sharing a variable intro-

¹Slight abuse of notation here... The term M and the dots are not usually included in an ex-
ternalised diagram, though we hope the intuition is clear. It is a general term, and thus a general
diagram.
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duced in ξ to a phase denoted effect in ζ (3.17).

(3.17) G(α) :≡ ξx ζα91x # x #
α

Which we can then give to the linking function to produce a phase gadget
diagram, as presented in (3.18).

(3.18) ζxζy ℓG(α)〈x, y〉 # 〈x, y〉 # α

This pattern of linking variables can also be extended, connecting more of
them by stacking linking functions. An example of this, though on a somewhat
crazy form, is shown in (3.19).

(3.19) ζxζyζz ℓG(α)〈x, y〉 # ℓH〈x, z〉 # 〈z, y〉 #
α

Reading the ζ-term, however, we see that its intention is actually clearer than
the diagrammatic form. It introduces three variables in the ζ-basis, sharing them
each once, and linking them with a gadget function and a Hadamard, before re-
turning the last two arguments swapped. In general, the intentions behind ζ-
terms are quite clear, especially once you are familiar with their diagrammatic
interpretations.

Concluding this section, we have shown that having explicit control ofwhich
basis variables are shared with, together with the ability to link the variables to-
gether, make for a concise method of constructing multi-qubit unitaries. This is
somewhat surprising, since many quantum programming languages either come
with these unitaries pre-defined [18], or use explicit control structures to define
them [27]. Explicit control of the bases of sharing then, is one unique feature of
the quantum ζ-calculus.

3.1.2.2 Higher-order functions and sharing

In this section, we wish to explore what sharing means when the variable shared
is itself a function. This should of course be familiar to computer scientists as
higher-order functions, which is something that the ζ-calculus explicitly allows. The
question is then, what does it look like when sharing and discarding is employed?
One should not expect this to look anything like it does for the classical case, that
the functions are perfectly copied, but rather investigate the specific properties
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that arise from this kind of construction. As with first-order sharing we do not
think that the fact that entanglement is produced in these terms is a drawback,
but rather a cause for exploration. The linear λ-calculus is embedded in the ζ-
calculus anyways, and can be enforced syntactically on closed terms (by counting
the occurrences of variables). With this, we shall try to showcase some ζ-terms
which employ higher-order sharing.

The simplest example comes from theminimal sharing function, that is ζx〈x, x〉,
a function which produces two shared copies of some variable. Its externalisation
is shown in (3.20).

(3.20) ζx〈x, x〉 #

If we supply this ζ-abstraction with a higher-order type instead, we get the
diagrammatic derivation shown in (2.8).

(3.21) V

V

T

C

B
(Q → Q)∗

Q → Q

Q → Q

Then, if we expand its type to the base type, and duplicate the comultiplica-
tion according to (2.7), the derivation becomes (3.22).

(3.22) V

V

T

B
Q

Q

Q
Q∗

Q∗

Q∗

C

(Q → Q)∗

Q → Q

Q → Q

The externalisation of theminimal higher-order sharing example then,which
we denoted here simply by changing the variable name to f, is shown in (3.23).

(3.23) ζf〈f, f〉 # f
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Note here that even thoughwementioned several times before that themonoid
of observable structures is not really used in this version of the ζ-calculus, it does
show up when ζ-terms are externalised, since wires are reversed. Then, we see
that the sharing of a variable of a function type simply shares both the input and
the output. This has some interesting consequences. For one, it means that ar-
guments to the separated shared instances of the function in the same basis fuse
together, with their phases added. For example, for two shared copies 〈g, h〉 =

(Zx〈x, x〉)f of some function f, we have (3.24).

(3.24) 〈gζ1, hζπ1〉 # f
π

= fπ

Which is equivalent to applying the original function to the sumof the phases
of the arguments, then sharing the result in the same basis as before, that is equiv-
alent to the ζ-term (ζx〈x, x〉)(fζπ1). Moreover, if we do the same thing, but with
the arguments in the dual basis ξ, we have (3.25) by the rules of the ZX-calculus.

(3.25) 〈gξ1, hξπ1〉 # f
π

= 0

In some sense, this means that supplying a function shared in one basis with
different arguments in its dual basis is an impossible quantum event! One can
interpret this in various ways; we chalk it up to the time-reversing nature of en-
tanglement. If we look at (3.22) again, we can look at the multiplication on in-
puts as the comultiplication on time-reversed inputs. Since the classical points
(points which copy perfectly) of the comultiplication are the points Jξ1K = |0〉 andJξπ1K = |1〉, it only produces perfect copies of such points, not ones on the form we
supplied as arguments in (3.25). Thus, making the event impossible.

This demonstrates the inability to use shared functions as perfect indepen-
dent copies of each other, not unexpected. Sowhat can else canwe dowith higher-
order sharing? Well, it is possible to use this construction tomodify the behaviour
of a function, thus creating a higher-order ζ-abstractionwhichmodifies a function,
instead of duplicating it. We looked at such a termwhen defining externalisation,
the self-composition function (2.18). We can extend this ζ-abstraction to inject an-
other function in the composition (3.26).

(3.26) λfζg g ◦ f ◦ g #
f

g

That is, it runs two functions in parallel with respect to some basis. It also
scales suitably when defined for multi-qubit functions (3.27).
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(3.27)
f

g

An example of such a function would be switchβ :≡ βf f ◦ H ◦ f for some
basis β ∈ {ζ, ξ}, which we call the Pauli switching function. So called because of its
behaviour when applied to a Pauli gate (σx :≡ ξ̂π, σz :≡ ζ̂π). When applied to a
Pauli gate of the same basis it switches it off, that is, it becomes the identity gate
instead. Its behaviour is shown in (3.28) and (3.29).

switchζ σz # π =(3.28)

switchξ σx # π =(3.29)

When applied to a Pauli gate of the dual basis, it leaves the gate unchanged,
shown in (3.30) and (3.31).

switchζ σx # π = π(3.30)

switchξ σz # π = π(3.31)

The proofs of this behaviour in the ZX-calculus are left as an exercise to the
reader (the solutions can be found in [28]). It is also easy to show that the Pauli
switching function is self-inverse, and as such, it switches on Pauli gates when
applied to the identity function [28].
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3.2 The spacetime ζ-calculus

In the previous section, we defined a model of the ζ-calculus for two complemen-
tary observable structures over a base type of C2. Using an underlying represen-
tation of the observable structures Z,X in the Pauli-matrices σZ, σX, we managed
to define a model of the ζ-calculus for describing quantum computation. In this
section, we will extend the set of observable structures to a set of four and define
a model of the ζ-calculus thereupon.

The set of four observable structures to be defined here will, like in the pre-
vious case, have an underlying matrix representation and a corresponding base
type. For the underlying matrix representation, we choose a set of four matrices
that are widely used in fermionic quantum field theory, the γ-matrices. This is
a set of four four-dimensional complex matrices γµ ∈ C4×4 whose eigenvectors
must thus also be four-dimensional, meaning that we get a base type of C4. We
will proceed with the definition of this model but for the unacquainted, we will
first provide a short introduction to these matrices and motivate this particular
choice of representation.

We have previously related the Pauli-matrices to the three axes of particle
spin in section 1.1.1.2 and we can likewise geometrically interpret the γ-matrices.
Specifically, they are related to the geometry of flat four-dimensional spacetime,
derived from the spacetime metric² ηµν, in the anti-commutation relation (3.32).

(3.32) {γµ, γν} = γµγν + γνγµ = 2ηµν

Put simply, (3.32) says that if we combine two sets of γ-matrices in the right
way, we get back information about the geometry of spacetime. As such, we can
associate each of the four γ-matrices to one axis of spacetime, γ0 to time and γk
for k = 1, 2, 3 to the three spatial axes. The above relation (3.32) is the defining
relation of a particular type of geometric algebra, called a Clifford algebra, which
in this case is denoted Cℓ1,3.

There is a set of particular Clifford algebras with special relation to various
symmetries present in quantum mechanics and relativity theory. A hierarchy of
these algebras was presented by Hiley in [29]. This hierarchy includes Clifford
algebras generated by thematrices thatwe have used so far. The algebra generated
by the Pauli matrices, the Pauli algebra Cℓ0,3 and that generated by the γ-matrices,
the Dirac algebra Cℓ1,3. It is this step in the hierarchy going from Cℓ0,3 to Cℓ1,3 that
we consider in this section, ending up with the spacetime ζ-calculus.

Moving on to the definition of theγ-matrices. There are a number of different
representations of the γ-matrices for us to choose from. Among them, the so-
called Dirac, Weyl and Majorana representations are perhaps most used. We will

²Put simply, the metric is used to measure distances between points in space. From this mea-
surement, however, one obtains further information about the geometry of that particular space.
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use the Dirac representation, shown in 3.1, where σk denotes a Pauli-matrix for
k = {1, 2, 3}.³

γ0 =

(
I 0

0 −I

)
γk =

(
0 σk

−σk 0

)
γ5 =

(
0 I

I 0

)

Figure 3.1: Dirac representation of γ-matrices

Here we have introduced another matrix, defined as γ5 := iγ0γ1γ2γ3. It
can also be shown to generate an observable structure. However, because it is
definable from the original set, it can either be seen either simply as an abstraction
representing this product. Using the matrices listed above, we move on to the
following definition.

Definition 3.2.1. (The spacetime ζ-calculus) We define a model of the ζ-calculus
Z(FdHilb, {τ, ξ, υ, ζ}) with the set of observable structures b := {τ, ξ, υ, ζ} shown
in figure 3.2.

τ :=
(
H, δT = , εT =

)
ξ :=

(
H, δX = , εX =

)
υ :=

(
H, δY = , εY =

)
ζ :=

(
H, δZ = , εZ =

)
Figure 3.2: Observable structures of the spacetime ζ-calculus.

Four basis abstractions are introduced by these observable structures, ad-
hering to the usual relations of 1.1.9. When referring to specific bases, the names
above will be used and when referring to a general observable structure, we will
use ζµ with index µ ∈ {T, X, Y, Z}.

We will use the set of four eigenvectors of the γ-matrices to construct the
comonoid and counits of the corresponding observable structures shown in equa-
tions 3.33 and 3.34.

δµ := |µ0µ0〉〈µ0|+ |µ1µ1〉〈µ1|+ |µ2µ2〉〈µ2|+ |µ3µ3〉〈µ3|(3.33)
εµ := 〈µ0|+ 〈µ1|+ 〈µ2|+ 〈µ3|(3.34)

where |µi〉 denotes the i-th eigenvector of γµ.

³The block-matrix representation used above hints at somemanner of redundancy for theC4×4

representation. This can also be seen in the degeneracy of the eigenvalues of the γ-matrices and
this is something which will be explored below in discussion about a possible quaternionic repre-
sentation of these observable structures
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From this, we have seen that it is possible to define four observable structures
using the eigenvectors of the γ-matrices. As opposed to the observable structures
of the quantum ζ-calculus, these are not complementary.

We move on to defining phase groups Λµ and unbiased points αµ, shown in
equations (3.35) and (3.36).

Λµ(α,β, θ) := |µ0〉〈µ0|+ eiα |µ1〉〈µ1|+ eiβ |µ2〉〈µ2|+ eiθ |µ3〉〈µ3|(3.35)
αµ := |µ0〉+ eiα |µ1〉+ eiβ |µ2〉+ eiθ |µ3〉(3.36)

Each observable structure thus has a phase group parameterised by three
angles, generating in the end the full state space. The topology of this space is yet
to be understood, although we can recover from the three relative phases that the
space must be considerably more complex than that of C2. A particular subgroup
of the total phase space can be constructed similarly to the one made in the two-
dimensional case. This is done in a manner appropriate for the structure of the
eigenvalues. Specifically, each of the four γ-matrices has two sets of two eigenvec-
tors with degenerate eigenvalues (of ±1). We interpret this by assigning to each
set a common phase, relative to the other set. Following this, the definitions of
(3.35) and (3.36) are re-written in equations (3.37) and (3.38).

Λµ(α) := |µ0〉〈µ0|+ |µ1〉〈µ1|+ eiα(|µ2〉〈µ2|+ |µ3〉〈µ3|)(3.37)
α := |µ0〉+ |µ1〉+ eiα(|µ2〉+ |µ3〉)(3.38)

This defines a subgroup of the total phase group, which we will take as the
canonical way to represent these phase groups..

As in the quantum ζ-calculus, we can derive the generators of the underlying
representation of the spacetime ζ-calculus using ζ-termsparameterised by aphase
of π (3.39).

(3.39) γ0 := τ̂π iγ1 := ξ̂π iγ2 := υ̂π iγ3 := ζ̂π γ5 := ω̂π

The extra factors in the spatial (i.e. for {ξ, υ, ζ}) occur because the eigenvalues
of these matrices are imaginary⁴, and as such we need an extra global scalar of i.

Before moving on, we must stress the rather strong speculative nature of
some of the claims made in the next few paragraphs. We make extrapolations
from correspondences found in the quantum ζ-calculus and apply them here, and
they should be seen as such naive extrapolations that may fail were they to be pro-
jected to further scrutiny. However, as the authors find the interpretations to be
of interest, we carry on and explore what can be found from these interpretations.

⁴The spatial γ-matrices are anti-Hermitian.
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Previously in the definition of the quantum ζ-calculus, we provided a geo-
metric interpretation of the phase group. We associated the two observable struc-
tures ζ, ξwith the two axes of the Bloch sphere S2 and interpreted the phase group
as denoting rotations around these axes. In the case of four observable structures,
we will take the same stance. To each observable structure in b, we associate an
axis of the four-dimensional Bloch sphere S4 around which the respective phase
groups rotate. The Bloch sphere of S4, as in the quantum case, is also the projec-
tive space of a Hopf fibration, in particular the quaternionic Hopf fibration (3.40)
that we will look at for the moment.

(3.40) S3 ↪→ S7 → S4

This can be read ”S7 is fibred over S4 with fibres homeomorphic to S3”, and
interpreted as there being a family of points ’with the topology’⁵ of S3 in S7 that
can be identified with a single point on S4. With S4 as our base space, we will
attempt to give similar interpretations as in the quantum case. For a general vector
Ψ = (αβρσ)T ∈ C4 the normalisability condition reads (3.41).

(3.41) |α|2 + |β|2 + |ρ|2 + |σ|2 = 1

Which clearly yields the definition for S7, meaning this is the total space of
our base type C4. Now onto the fibre space. The only possible configuration of
complex elements whose normalisation condition yields an equation for S3 is that
of vectors in C2, however, these cannot multiply vectors in C4, so we are at an
impasse. Let us instead follow the lead of the Hopf fibration and shortly consider
the quaternionic case.

For quaternionicγ-matrices inH2×2, we get a base type ofH2. The same logic
as above follows here, the base space corresponds to S4 and the total space to S7.
The fibre space S3, in this case, can be shown to geometrically be a unit quater-
nion [23], corresponding to the global phase freedom. Thus, for the quaternionic
spacetime ζ-calculus, we have a stronger correspondence with the quaternionic
Hopf fibration (3.40) than in the complex case.

Quaternions do however have the property of non-commutativity. The effect
of this in the setting of FdHilb would be that quaternionic scalars affect states or
processes differently depending on which side of the state or process they act,
meaning that there is some loss in interpretability of string diagrams in an SMC
where the objects are quaternionic [11]. We leave it at that for the discussion of
quaternionic observable structures for now and explore it further in section 5.1.

As described in Section 1.1.5, we can define an operation that transforms
between different observable structures, referred to in the colour-change rule. We

⁵This is somewhat vague. What is meant here by ’with the topology of S3’ is any number or
vector whose normalisation condition yields the equation for S3.
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Figure 3.3: Color change crystal for the spacetime calculus.

can define a similar operation in the spacetime calculus to switch between the
four (five) observable structures. We call these operators ηµ, for µ = 0, 1, 2, 3, 5⁶,
with η0 the identity matrix. The colour-change transformations for the observable
structures in the spacetime calculus are visualised in figure 3.3. In this diagram,
we interpret the nodes and edges as follows. A node represents the phase group
of an observable structure, the edges its η-matrix. They are directed by the order
of conjugation of the η-matrices⁷. The colour-change transformations are defined
as follows.

η†ν ◦Λµ(α) ◦ ην = Λρ(α)  µ ρ
ν

(3.42)

ην ◦Λµ(α) ◦ η†ν = Λρ(α)  µ ρ
ν

(3.43)

η†ν ◦Λµ(α) ◦ ην = Λρ(α) = ην ◦Λµ(α) ◦ η†ν  µ ρ
ν

(3.44)

The inclusion ofω can now be more readily explained. As mentioned there
are multiple representations of the γ-matrices, among them there are the Dirac
and Weyl representations. These differ only in the choice of the temporal basis,
choosing γ0 and γ5 respectively, leaving the spatial bases the same. Including ω
enables one to choose freely between these two representations, given by the two
lobes in the above figure, by simply switching between the two temporal bases by
applying this higher-dimensional version of the colour-change rule. Further, the
inclusion of ω is necessitated for the closure of the colour change rule as it has
been constructed.

⁶Henceforth, we take this index to run over the five observable structures, includingω.
⁷Note that ηµ is non-Hermitian, meaning (ηµ)† 6= ηµ, whywemake the distinction in the order

of conjugation.
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3.3 Orders of computation

Moving on from the two previous models of the ζ-calculus we will in this section
try to complete the pattern outlined by them. The justification for the connec-
tion between the quantum and spacetime ζ-calculus is their phase group con-
struction relating to rotations around axes of the projective spaces of the complex
and quaternionic Hopf fibrations. Here we will try to complete this pattern. By
Adams’ theorem [30], the onlyHopf fibrations are the real, complex, quaternionic,
and octonionic cases, presented in (3.45).

(3.45)
è
1

:= S0 ↪→ S1 → S1 è
2

:= S1 ↪→ S3 → S2

è
3

:= S3 ↪→ S7 → S4 è
4

:= S7 ↪→ S15 → S8

For each Hopf fibration è
n
(haglaz⁸ ) we construct an order of computation o

n

(odal), a model of the ζ-calculus with observable structures generated as axes for
their respective projective spaces. The two orders presented earlier used the gen-
erators of the Pauli and Dirac algebras in the Clifford hierarchy as presented by
Basil Hiley [29] to construct bases for the respective Hilbert spaces as the set of
eigenvectors for the generators. In the quantum ζ-calculus these are the Pauli ma-
trices σz and σx which generate the observable structures ζ and ξ. For the space-
time ζ-calculus it is the same construction, but for the γ-matrices. Generally, the
connection between bases ofHilbert spaces and observable structures is employed
as in [16]. For these orders then, we obtain a set of observable structures, together
with a corresponding generalised Bloch sphere.

The phase group of each observable structure in the orders is restricted to
have one phase, the angle of rotation about the axis defined by the observable
structure. We presented the argument for this restriction in the spacetime ζ-
calculus in the previous section. We identify a notion of colour change between
these phase groups by generalising the action of the Hadamard gate. In quantum
computation, thematrix of this gate is defined asH := |+〉〈0|+ |−〉〈1|, mapping the
basis vectors from the computational basis to the Hadamard basis. We generalise
this construction by mapping from the standard basis (the basis {|i〉}i, as ζ in o

2

and τ in o
3
) to each of the other bases in the order. The construction of these is

presented in (3.46), where βi is the i-th basis vector.

(3.46) ηβ∈b :=
∑
i

|βi〉〈i|

We call these matrices ηβ-matrices for each basis β. For the standard basis,
these are always the identity matrix.

⁸Hail is the coldest of grain; it is whirled from the vault of heaven and is tossed about by gusts
of wind and then it melts into water. (A runic poem for è)
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Figure 3.4: The basis crystal for orders up to o

3
.

In each of the orders we have explored and presented the relation between
the bases by the η-matrices form a completely connected graph between them.
We call this graph the basis crystal of the order, where the nodes of the graph
correspond to the phase groups of bases, and the edges to the η-matrices. For
an edge η connecting the nodes β1 and β2, this denotes that η†β1η = β2, and
vice-versa. If the η-matrix in question is not self-conjugate it might act differently
depending on which side of the equation is the adjoint of the matrix. In this case
we have marked these edges by a direction (described in detail in the previous
section). The basis crystals for orders up to o

3
are presented together in figure

3.4.
As discussed in the previous section the W-basis in o

3
is similar to the Y-

basis in o
2
, in that it is the product of the other bases. With the connection to

fermionic quantum field theory, one can choose a representation to work within,
where both the T and W-bases are time-like such that you pick one of the rep-
resentations. Because of this we have presented them as separate crystals in the
diagram, as they should be interpreted. The η-transforms between the represen-
tations are presented at the bottom of the figure. Note the symmetries present in
the basis crystal of order o

3
, that the edges opposite each other are always the

same η-matrix. Note also that the identity edges have been removed from this
diagram (compared to figure 3.3), for sake of decluttering.

Notice how the two representations ofo
3
are complete graphswith the num-

ber of nodes equal to the dimension of the projective space of è
3
. Notice also that

the shift between the representations (at the bottomof figure 3.4) is the same as the
basis crystal ofo

2
. Looking at the basis crystals like this we see that they come in

pairs of basis graphs and representation graphs, where the representation graph
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Figure 3.5: Conjectured basis crystal for o
4
.

is the basis graph of the previous order. This also holds for o
2
where the basis

graph is a K2⁹ graph, and the representation graph is the one for o
1
of one repre-

sentation. If we continue this pattern to o
4
we should see a K8 basis graph, and a

K4 representation graph, producing a full basis crystal on the form in figure 3.5.
We have not investigated a set of observable structures for o

4
that fulfil the

connectivity of this basis crystal, and the argument for its presentation is purely
inductive on the structure of the previous ones, wherefore we have not given the
nodes any names. The structure of this pattern is interesting, however. It produces
a set of 8 observable structures for each representation, where one of the bases is
of a different nature than the others. The full set then is 7 constant observable
structures (the four lobes of the basis crystal being the same bases), and 4 variable
ones that determine the representation (the centre of the basis crystal), totalling

⁹Kn is the complete graph of n nodes.
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11 bases. The centre of the basis crystal is the spacetime bases of the previous
order, and the 7 others are of some different nature. This setup is intriguing, with
regards to the 11 dimensions of some string theories [31, 32], four of them being
the 4-dimensional anti-de Sitter spacetime, and 7 of them being extra compact
dimensions. We have not investigated this order any more than this, but thought
this was worth mentioning here anyway.

With the construction of a model of the ζ-calculus for each of the Hopf fibra-
tions we present the general conjecture on the orders of computation.

Conjecture 1 (Orders of computation). For each Hopf fibration è
n

there exists a corre-
sponding order of computationo

n
. Each order is a model of ζ-calculus of 2n−1 observable

structures, each relating to each other by a completely connected graph with the construc-
tion of η-transformations. The phase groups of each observable structure ino

n
are rotation

operators for the projective space of è
n
.

We also include the classical order of computationo
0
, as the model of the ζ-

calculus defied on the canonical cartesian duplication and discarding. This would
be a non-linear λ-basis, which recovers the classical λ-calculus. With this we con-
clude the discussions on concrete models of the ζ-calculus. The sections other
than quantum programming are meant as an exploration of the generality of the
definition of the theory. In parts speculative, though mostly meant to showcase
the fact that it is possible to apply the theory to topics broader than only quantum
computation. Whether or not these further applications have any use we have not
been able to definitively answer.
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3.4 An analysis of sharing

We will now make a short digression which will be useful later when we dis-
cuss the features of the ζ-calculus with regards to sharing. We seek to give an
algebraic analysis of the ”quantity” of entanglement that is produced by a ζ-term
which uses sharing. The main idea here is to convert a ζ-abstraction to a function
mapping quantum states to the entanglement entropy of the bipartite state that
results from the application of the abstraction on that state.

For a given function using sharing f : HA → HA�HA, the function describing
its entropy is sE(f) := |ψ〉 7→ SE[f |ψ〉]. Where SE : HAB → [0, 1] is the entropy of
entanglement for quantum states, defined on the Schmidt decomposition [33] in
(3.47).

(3.47) SE

[∑
j

κj |uj〉 � |vj〉

]
:= −

∑
j

|κj|2 log|κj|2 |uj〉 ∈ HA , |vj〉 ∈ HB

The vectors |uj〉 and |vj〉 are the orthonormal bases for the subspacesHA and
HB respectively. We begin by examining the simplest instance of sharing, the ζ-
term βαx〈x, x〉 for some basis β ∈ {ζ, ξ} in the model Z(FdHilb, {ζ, ξ}). We write
Σαβ for the Hilbert space interpretation of this term (3.48).

(3.48) Σαβ := J` βαx〈x, x〉 : Q → Q � QK = |β0β0〉 〈β0|+ eiα |β1β1〉 〈β1|

We supply a general qubit state presented in Bloch sphere coordinates, writ-
ten in the same basis as the ζ-abstraction, and calculate the resulting entropy of
entanglement in (3.49).

SE
[
Σαβ
(
cos θ

2
|β0〉+ eiϕ sin θ

2
|β1〉

)]
= SE

[
cos θ

2
|β0β0〉+ eiαeiϕ sin θ

2
|β1β1〉

]
(3.47)
= −

∣∣cos θ
2

∣∣2 log ∣∣cos θ
2

∣∣2 − ∣∣eiαeiϕ sin θ
2

∣∣2 log ∣∣eiαeiϕ sin θ
2

∣∣2
= −

∣∣cos θ
2

∣∣2 log ∣∣cos θ
2

∣∣2 − (∣∣ei(ϕ+α)∣∣ ∣∣sin θ
2

∣∣)2 log (∣∣ei(ϕ+α)∣∣ ∣∣sin θ
2

∣∣)2
= −

∣∣cos θ
2

∣∣2 log ∣∣cos θ
2

∣∣2 − ∣∣sin θ
2

∣∣2 log ∣∣sin θ
2

∣∣2
= − cos2

(
θ
2

)
log

(
cos2

(
θ
2

))
− sin2

(
θ
2

)
log

(
sin2

(
θ
2

))
(3.49)

From this, we obtain the function describing the entanglement entropy of
like-basis sharing (3.50).

(3.50) sE Σαβ = cos θ
2
|β0〉+ eiϕ sin θ

2
|β1〉 7→ − cos2 θ

2
log

(
cos2 θ

2

)
− sin2 θ

2
log

(
sin2 θ

2

)
Since the phasesα andϕhave no effect on this entropymeasure, we canwrite
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a simpler function sE(θ) := − cos2
(
θ
2

)
log

(
cos2

(
θ
2

))
− sin2

(
θ
2

)
log

(
sin2

(
θ
2

))
.

If we instead write the general qubit state in some basis χ dual to the basis
of sharing δ, we obtain the function for the entropy of entanglement in (3.51).

(3.51) SE
[
Σαδ
(
cos θ

2
|χ0〉+ eiϕ sin θ

2
|χ1〉

)]
= −

∑
η∈Φ±

|η|2 log|η|2 Φ± = cos θ
2
± eiϕ sin θ

2

Where, once again, themeasure of entanglement is independent of the phase
of the sharing ζ-abstraction. The relative phase of the general quantum state does
have an effect on the entropy produced in this case of dual-basis sharing. We de-
scribe the function of the entropy of entanglement produced by dual-basis sharing
in (3.52).

(3.52) s∗E(θ,ϕ) := −
∑
η∈Φ±

|η|2 log|η|2 Φ± = cos θ
2
± eiϕ sin θ

2

Thus, we have produced two functions sE(θ) and s∗E(θ,ϕ) for the entropy of
entanglement produced by like-basis and dual-basis sharing. We give the graphs
of these functions in figure 3.6, depending on the amplitude θ and, in the dual-
basis case, phase ϕ of a general quantum state.

π

2
π

3π

2
2π

θ

1

SE

(a) Like-basis sharing. (b) Dual-basis sharing.

Figure 3.6: Sharing analysis.

This small digression is intended to be a small result which may be useful
when discussing the effects of sharing in different bases, instead of simply sharing
in some preferred basis. We will discuss this result in the conclusion of the thesis,
for now it is simply an investigation of the effects of sharing.
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4
Philosophical Investigations

Mit jeder epochemachenden Entdeckung
schon auf naturwissenschaftlichem Gebiet
mußte [der Materialismus] seine Form ändern.

F. Engels

IN Ludwig Feuerbach and the end of classical German philosophy [34], fromwhich this
chapter’s epigraph is quoted, Engels lays out the way in which the naive ma-

terialism of 18ᵗʰ century scientists grew to its mature philosophical form out of
the philosophy of Hegel. He specifically criticises the critique of Christianity by
Feuerbach, one of the young Hegelians. He accuses Feuerbach of confusing the
emergingmaterialistworldviewwith purelymechanical science. The limitation of
which is its inability to describe a world in ever-changing historical development,
something which is not surprising considering the «metaphysical and antidialec-
tical» philosophical frameworks of 18ᵗʰ century science, according to Engels. Ex-
amples of this are the, now superseded, theories of Newtonian mechanics, phlo-
giston¹ chemistry, and pre-Darwinian biology. Though the world was described
as being in constant motion, this motion was mechanical and deterministic, stuck
in an eternal cycle. Compared to the dialectical view of constant motion in context
of its historical development.

Contrasting the epistemological theories of knowledge being driven by pure
reason alone, Engels posits that our knowledge is intimately tied to developments
of experimental science and industry; hand-in-handwith the developments in the
means of production, that is. This is evident, of course, in that the validity of sci-
ence lies not in its ingenuity or beauty, but rather in experimental verification. The
ability of experimental verification then, is limited by the larger process of devel-
opments of production, materials, and technology. The limits of knowledge then,
scientific or otherwise, are limited by this larger process. From this, Engels draws
the conclusion that materialist philosophy, the philosophy of the external reality
being prior to our consciousness in it, must change its form in pace with revolu-
tionary developments in science, our verified knowledge of the material. In this
chapter, we will present a short exploration of what the scientific underpinnings

¹The theory that all combustible substances contained some hypothetical element called phlo-
giston.
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of our thesis implies, and in this light, try to venerate a materialist philosophy in
the wake of ”real” matter.

We will begin by making our position on the foundations and philosophy of
quantum physics clear, outlining the relational interpretation as proposed by Carlo
Rovelli. Then, we will highlight the ontological process of this interpretation and
show that it is already established in the works of other philosophers. Principally,
we will explore the philosophy of language of the late Ludwig Wittgenstein, as
well as the theory of value of KarlMarx. The goal is not to argue for these concepts
on their own, but rather explore the larger process of establishing properties of
our shared experience by way of analysis of context and relation. This stands in
opposition to philosophywhich regards objects having intrinsic properties of their
own.

Before embarking on this exploration we wish to make our philosophical
language clear, and specifically the materialism-idealism distinction we will dis-
cuss here. As described in [34], the historical roots of this distinction (of great
importance to medieval scholasticism) relate to the relationship of thinking and
being, and of the prerequisite of a creator. This creator need not refer to a creator
god, per se, and could also refer tomore convoluted explanations of the substance
prior to matter, this could be reason, consciousness, or idea, for example. Engels
explains the distinction in the following way.

Frågan om förhållandet mellan tänkandet och varandet, frågan: vilket
är det primära, anden eller naturen, denna fråga tillspetsades gente-
mot kyrkan till att lyda: har gud skapat världen eller har världen evigt
existerat? Allteftersom denna fråga besvarades, delade sig filosoferna
i två stora läger. De som hävdade, att anden existerade före naturen
och som således sist och slutgligen förutsatte en världskapare av ett
eller annat slag bildade idealismens läger. De andra, som betraktade
naturen som det primära, tillhör materialismens olika skolor.²

This is the distinctionwewill also employ, whether or not somephenomenon
requires something external and prior to observable and verifiable nature. This
we shall call idealism, especially when one appeals to the human consciousness as
an integral part of their explanation of reality. Note that we do not put any moral
weight on either of the camps, even though we do claim that materialism is the
only framework capable of producing any knowledge compatible with a scientific
worldview.

²The question of the position of thinking in relation to being, the question: which is primary,
spirit or nature, that question, in relation to the church, was sharpened into this: Did God create
the world or has the world been in existence eternally? The answers which the philosophers gave
to this question split them into two great camps. Thosewho asserted the primacy of spirit to nature
and, therefore, in the last instance, assumed world creation in some form or other comprised the
camp of idealism. The others, who regarded nature as primary, belong to the various schools of
materialism.
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4.1 The relational interpretation of quantum physics

The relational interpretation of quantum mechanics [35], or RQM, is one where
the ontological weight is put solely on what is observable, disregarding notions
relating to what cannot be ultimately observed. With regard to the relativism of
observers and observer-dependant values, Rovelli states that (i) all observers are
equivalent, that (ii) the result of a measurement of a system is dependent on what
other system is doing the measurement where (iii) the value of an observable of a
system is determined only at measurement relative to another system.

With regard to (i), the statement covers the supposition that there is no ob-
server whose observation is privileged from that of any other observer. This view
of measurement stands in opposition to that taken in the Copenhagen interpreta-
tion, explained by John Wheeler in [36].

It associates a state function with the system under study — as for
example a particle — but not with the ultimate observing equipment.
[..] The ultimate observing equipment still lies outside the system that
is treated by a wave equation.

While the interaction of observer-observed is naturally to be taken as a relation
between these two objects, the observer carrying out the measurement is taken as
being external to the system under observation. The relational aspect of this type
of measurement is extended in RQM to the interactions of any systems. To this,
Rovelli states the following. [35]

Any physical system can play the role of the “Copenhagen observer”,
but only for the facts defined with respect to itself. From this perspec-
tive, RQM is nothing else than a minimal extension of the textbook
Copenhagen interpretation, based on the realisation that any physical
system can play the role of the “observer” and any interaction can play
the role of a “measurement”

Thus, in RQM, there is no observer-observed distinction, in this sense. This brings
us to the second point which is a statement on the dependence of the value of a
measurement on which system is doing the measurement. Consider for example
the interaction of a measurement apparatus S ′(ϕ) angled at some degree ϕ with
relation to the stream of particles, with an as-yet undetermined spin-component
A of a system S of a set of spin- 1

2
particles. The value of A depends on which

particular instance of the system S ′ determined by ϕ it is that S interacts with.
This relational aspect is clearly inherent to quantum theory, realised in RQM

in terms of facts, that is statements about the value of an observable relative to the
interacting systems. Rovelli describes quantummechanics as a theory about facts,
that is statements about the value that observables take relative to the systems of
an interaction. Written as follows.
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Facts are relative to the systems that interact. That is, they are labelled
by the interacting systems. This is the core idea of RQM. It gives a gen-
eral and precise formulation to the central feature of quantum theory,
on which Bohr correctly long insisted: contextuality.

The value of an observable taken in an interaction is thus in RQM taken to be in-
herently dependent on the context in which it appears, that is in relation to which
system the value is actualised. About facts, he further notes the following. [35]

Facts are sparse: they are realised only at the interactions between
(any) two physical systems. This is the key physical insight in Heisen-
berg’s seminal paper and a basic assumption of RQM.

This brings us to the third note about RQM. As noted above, RQM posits that a
fact about the value of an observable is determined only at an interaction between
two systems and furthermore what value is taken depends on which systems are
interacting. One conclusion to be drawn from this is that any possible values taken
are a property of the interactions and not of any particular quantum states by
themselves. This begs the question of what occurs in between the interactions that
define the determinate values taken in those interactions. In [37], Villars considers
a question which brings to light the fully relational aspect of RQM. It concerns the
position of a particle in between measurements. He asks the following.

What is the value of amicrophysical object’s position-defining interac-
tion between position-defining interactions?’, the answer, ‘In this case
it does not have a value’, makes sense; where no interaction of the ap-
propriate kind is occurring, the corresponding observable cannot have
a value.

This rings close to the statement of RQM with regard to the well-definedness of
values of observables in between measurements. Such a question is meaningless
in RQM. A stance is taken against the usual descriptions of quantum mechanics
wherein a state in between measurements in the form of a wave function ψ is
considered. As noted by Rovelli,ψ is to be seenmerely as a bookkeeping device of
known facts about a system from interactionswith another system, not something
that is inherent to the system itself.

Of note in our exploration on the philosophical implications of RQM is the
Bogdanov-Lenin polemic, as pointed out by Rovelli in his book Helgoland [38].
This is a polemic between the two Bolsheviks, Alexander Bogdanov and Vladimir
Lenin. In his book Empiriomonism [39], Bogdanov proposes a materialist philos-
ophy drawing inspiration from the works of the Austrian physicist Ernst Mach.
This is of great interest here since, as Rovelli writes in Helgoland, Mach had
served as inspiration to both Einstein and Heisenberg in the foundations of both
quantummechanics and the theory of relativity. Partly in response to Bogdanov’s
work, Lenin published Materialism and Empirio-Criticism [40], where he passion-
ately criticises Bogdanov and the ”Machists” in his characteristic polemical style.
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We highlight here a quote from Lenin’s work, from the discussion on the ”disap-
pearance of matter”.

Tyden enda ”egenskap”hosmaterien, vid vars erkännandedenfilosofiska
materialismen är bunden, är dess egenskap att vara en objektiv realitet,
att existera utanför vårt medvetande.³

This brings up a contentious point with regard to relational quantum me-
chanics, that of objective reality. With regards to realism, Rovelli distinguishes
between different forms of the term, the weak and the strong sense [41]. Regard-
ing the weak sense of the term, Rovelli states the following.

‘Realism’ is a term used with different meanings. Its weak meaning is
the assumption that there is a world outside ourmind, which exists in-
dependently from our perceptions, beliefs or thoughts. Relational QM
is compatible with realism in this weak sense. “Out there” there are
plenty of physical systems interacting among themselves and about
which we can get reliable knowledge by interacting with them; there
are plenty of variables taking values, and so on. There is nothing sim-
ilar to ‘mind’ required to make sense of the theory.

Thus, relational quantum mechanics is indeed compatible with the criterion
ofmatter exposed by Lenin, as far as the least sense of which, weak realism, is con-
cerned. This is, however, not enough since this definition of materialism is rather
loose. What is needed is to examine the conclusions drawn from materialist phi-
losophy and review them in light of the description of reality that RQM provides.
With this in mind we now look at the strong sense of realism, with which RQM is
incompatible.

Relational QM is anti-realist about the wave function, but is realist
about quantumevents, systems, interactions... Itmaintains that “space
is blue and birds fly through it” and space and birds can be constituted
by molecules, particles, fields, or whatever. What it denies is the util-
ity –even the coherence– of thinking that all this is made up by some
underlyingψ entity. But there is a strongermeaning of ‘realism’: to as-
sume that it is in principle possible to list all the features of the world,
all the values of all variables describing it at some fundamental level, at
each moment of continuous time, as is the case in classical mechanics.
This is not possible in relational QM.

What this stance of the relational interpretation implies for materialism re-
quires substantial investigation, much more than we are able to expound in these

³For the only property of matter, with which philosophical materialism is bound to the procla-
mation thereof, is its property of being an objective reality, to exist outside of our consciousness.
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short pages. A close examination of the works cited here, and the relation of the
philosophical frameworks they outline, is work for the future. Here we wish to
simply state the surface level connections between the frameworks.

The final quote from Lenin’s work that we wish to bring up with regard to
matter and objects is as follows.

Tingens ”väsen” eller ”substans” är också relativa; de uttrycker endast
djupet av den mänskliga kunskapen om objekten, och om denna kun-
skap igår inte sträckte sig längre än till atomen och idag inte når län-
gre än till elektronen och etern, så hävdar den dialektiska materialis-
men att alla dessa milstolpar för den framåtskridandemänskliga veten-
skapens kunskap om naturen är temporära, relativa, ungefärliga.⁴

Wewill forgo the confusion of thewords used by Lenin here in the context of
modern science,Wittgensteinwill have something to say about thiswhole endeav-
our of mixing language games anyway... This quote is interesting in the context of
the anti-monist (monism being the view that all existing things can be explained
by a unified substance) stance that has been ascribed to the relational interpreta-
tion: there is no meaning to ’the wave-function of the universe’. If the view of
substance is that it is of an explanatory nature, a collection of facts with which we
explain events, rather than being ascribed as the constituent of objects, then one
could indeed describe Lenin’s stance as anti-monist. This is not what is usually
ascribed to materialism, however. The naive view of materialism is that it claims
precisely that reality is materially monist, that nothing exists other than material
objects moving through space and time. In light of the nonexistence of substance
inherent in objects themselves, a midenist (Greek. μηδέν, nothing) position, we
would like to reframe this naive materialism. The term śūnyatā is also fitting here,
referring to the Buddhist philosopher Nāgārjuna whom Rovelli also mentions in
Helgoland [38]. In this view, the claim of materialism is rather on the causal rela-
tionship between the natural world (matter) and the position of our consciousness
in it. This reframing ofmaterialism, examiningwhat the conclusions of the frame-
work rely on, and stating this with nature in relation to itself, is precisely what
is needed for materialism to be in accordance with the revelations of quantum
theory in the description of the relational interpretation. Further, this midenist
materialism has implications for the existence of individual consciousness, and
the assumptions of individualism. These aspects of our experience would have
to have a solely social-relational character, mediated by something, a language
perhaps.

⁴The nature or substance of objects is also relative; they only express the depth of the human
knowledge of the objects, and if this knowledge as of yesterday was limited to the atom and today
not any further than the electron and the æther, then dialectical materialism only claims that all of
these milestones of the progressing human scientific knowledge of nature are temporary, relative,
and approximate.
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4.2 Wittgenstein: language games and meaning
In Philosophical Investigations [42] Wittgenstein introduces a multitude of concepts
relevant to our discussion here. Principally, we are concerned with the change of
perspective in the philosophy of language presented in his work. This is the shift
from the view that the meaning of language is described by words being repre-
sentative of perceived objects, either external to or internal sensations of a subject,
to the view that meaning is best described by the social use of words in the con-
text of where they are used. Wittgenstein also has a specific argument against the
language used for sensations internal to the subject, what he calls private language
[43], which we will not cover here. Wittgenstein explains this perspective, often
called meaning-as-use (though not by him), in the following way.

För en stor klass av fall i vilka ordet ”betydelse” används -om än inte
för alla fall där det används- kan man förklara detta ord så: Ett ords
betydelse är dess bruk i språket. Och ett namns betydelse förklararman
ofta genom att man pekar på dess bärare.⁵ ⁶ (§ 43)

Then, to give a description of the function of language in use, Wittgenstein
oftentimes brings up the concept of a language game. This concept, as well as the
other multitude of concepts used byWittgenstein are never precisely defined any-
where in the book, but rather repeatedly revisited among the thousand statements
of thework. This however, might be a symptomof trying to state the ineffable, and
a reflection of the view of language he is trying to portray. It does make defining
these concepts in a concise way here, quite difficult though.

In § 23, Wittgenstein lists a number of things to be considered as language
games, including «Giving orders, and acting on orders - Describing an object
by appearance - Recalling a sequence of events - Guessing riddles - Writing and
telling a story». What is the common factor here, the unifying definition of lan-
guage as language games? Nothing! At least nothing precise which we could call
the defining feature which is the essence of what a game is (or language at that).
Rather they are «related to each other in many different ways» (§ 65), they are
defined by the web of relations in which they appear in use. This is precisely the
relational aspect we wish to highlight, that the meaning of language is inherent in
neither the speaker nor the objects to which they supposedly refer to. It is a game
of relations, social, between people and their shared environment. Our language,
and the advanced social systems we build in it, is material in nature. It is a col-
lective navigation of our shared material reality, it loses all meaning without the
material. This is where we hope that the connections to both Rovelli, Lenin, and

⁵Philosophical Investigations is written as a collection of numbered statements, here we will refer
to statement n as § n.

⁶For a large class of cases where the word ”meaning” is employed -if not for all cases- it can be
explained as such: The meaning of a word is its use in language. And the meaning of a name is
often explained by pointing to the bearer of that name.
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Engels are clear. In the ontology of properties, the criterion of materiality, and
materialist epistemology, all stating this simple fact of our relational-material re-
ality.

We are not the only ones who have made this connection, as we are inspired
by the brilliant philosophical simplicity of Rovelli, and the connections he has al-
ready made. Other examples of the connection between Rovelli and Wittgenstein
being made are [44], which also includes the similarity of both Wittgenstein and
relational quantum mechanics to early Buddhist philosophers (something which
Rovelli also mentions in Helgoland).

With regards to the inclusion of Wittgenstein as a materialist philosopher,
we turn to Louis Althusser and The Underground Current of the Materialism of the
Encounter [45]. Though his inclusion of Wittgenstein in this underground current
of materialism is underexplored (in the opinion of the authors), we wish to high-
light the similarity of Althusser’s focus on the encounter and Rovelli’s ontology of
events. Althusser also calls this current the materialism of the rain, referring to Epi-
curus clinamen (infinitesimal swerve) of the parallel rain of atoms in the genesis.
This clinamen causes the rain of atoms to collide, creating our world in the first
encounter, the first event. As Althusser puts it.

The clinamen is an infinitesimal swerve, ’as small as possible’; ’no one
knows where, or when, or how’ it occurs, or what causes an atom to
’swerve’ from its vertical fall in the void, and, breaking the parallelism
in an almost negligible way at one point, induce an encounter with the
atom next to it, and, from encounter to encounter, a pile-up and the
birth of a world - that is to say, of the agglomeration of atoms induced,
in a chain reaction, by the initial swerve and encounter.

Althusser includes a great number of other philosophers in this current, in-
cluding Democritus, Machiavelli, Spinoza, Hobbes, Rousseau, Montesquieu, and
Heidegger. Whether or not these philosophers can rightly be called materialists,
in the sense we outlined earlier, is up to further exploration. Moreover, the con-
clusion that Althusser draws from his description of this current is anti-dialectial,
instead being something he coins as aleatory (dependant on chance). This is not a
stance we give credence to. Even if the origin of, or our knowledge of, the world is
in some sense probabilistic, why would that entail that the historical progress of
it should be indescribable by us? The movement of history, and of nature, deter-
mined by the contradictions which give rise to it, is still observable and describ-
able. When Althusser sees the inability of naive materialism to describe certain
events, overdetermined or not, shouldn’t he then, as a materialist, question his
very knowledge of matter, instead of its historically determined motion? Materi-
alism is indeed pliable, as we outline in the beginning of this chapter, and contin-
gent on the resolution of nature we have access to. We humbly put forth that an
investigation into the implications of modern science on materialist philosophy is
needed, instead of discrediting dialectics bymeans of reference to the unknowable
genesis, or the works of great philosophers.
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4.3 Marx: commodity exchange and value
Here we will provide yet another example of the relational thinking we have built
upon so far, the analysis of the commodity by Karl Marx. We will cover here
specifically the theory of value as proposed by Marx in the first chapter of Capital
[46]. The focus will be on value as something relational, not inherent to commodi-
ties themselves. To begin, we have to define what Marx calls «the dual nature of
commodities». Firstly, commodities have value on the natural form, the natural
properties of commodities making them useful in some sense (in relation to hu-
man need, that is), this is called use-value. This form of value is not quantitative
in the sense we usually mean by value; answering the question ”what is an ap-
ple worth” with ”my hunger” is indeed unexpected... Instead, the value-form of
a commodity is quantitative in this sense, answering the previous question in a
proportion of exchange, for example ”an apple is worth two pears”. This is the
exchange-value, a relation of exchanging use-values. As put by Marx.

Exchange-value appears first of all as the quantitative relation, the pro-
portion, in which use-values of one kind exchange for use-values of
another kind. This relation changes constantly with time and place.
Hence exchange-value appears to be something accidental and purely
relative, and consequently an intrinsic value, i.e. an exchange-value
that is inseparably connectedwith the commodity, inherent in it, seems
a contradiction in terms.

Again, the point of the discussion of these seemingly separate ideas is not
a statement of the concepts being the same, but rather an exposition of the ontol-
ogy of relations, the works of philosophers prior to the interpretations of quantum
mechanics making use of this mode of analysis that is present in the relational in-
terpretation. As we put forth in the previous section, when the properties we are
investigating are concerned with humans, as in language, we do not need to refer
to individual consciousness in any way, but focus instead on the social activity
of humans. This leads us to a collective, sociological analysis of the concepts, not
an idealist or metaphysical one. This is also true here, in the property of value in
commodities. Marx explains the social nature of value as follows.

However, let us remember that commodities possess an objective char-
acter as values only in so far as they are all expressions of identical so-
cial substance, human labour, that their objective character as values
is therefore purely social. From this it follows self-evidently that it can
only appear in the social relation between commodity and commodity

Thus, what we see as central to the process of analysis we are pointing out
is: that whatever the object of analysis, we have to move the properties we are
ascribing it from the thing in itself to all the objects it manifests itself to, that it is
in relation to.

75



4. Philosophical Investigations

4.4 Concluding remarks
In this chapter, we have made clear the relational interpretation of quantum me-
chanics, and connected its underlying ontology of relations to theworks ofWittgen-
stein and Marx. With the form and intention of materialism having been made
evident, we have proposed a direction of investigation for this philosophical cur-
rent, that as proposed by this chapter’s epigraph, materialism has to change and
evolve with the developments of science. We put forth a unifying trend in this
direction, as described by the relational interpretation, a mode of analysis that
moves the properties of objects to their relations in the material world. In this
sense, we intend to defend this analysis as a purely material one. As mentioned
byRovelli, we also see that the long tradition of ascribing any ontologicalweight to
the wave function of quantum mechanics as a metaphysical (and idealist) stance.
In general, this relational analysis, when applied to concepts related to humans,
suggests a social character, as we explored in the philosophy of language and the-
ory of value. With the works of Bogdanov not being explored here we wish to
suggest what directions this could take.

For Bogdanov, the question of how the material world interacts with our
cognition is central. The relational mode of analysis would place the home of dis-
cussion of things such as consciousness in the social realm, instead of the neuro-
physiological one. This direction of cognition could also include the critique of
Bogdanov by Ilyenkov⁷ [47], and the social theory of consciousness of the Vygot-
sky circle. Though not of any relevance to the scientific works of the authors of
this thesis, we wish to leave it as a point of further exploration, especially with the
current developments in cognitive science (predictive processing, for example).

To conclude, we hope that this philosophical investigation can serve as a nat-
ural part of the thesis, and not purely as a digression. The point in the flow of the
thesis is precisely to make our understanding of the subject we are writing about
clear, including its implications and larger mode of analysis. It is the conclusive
view of the authors that philosophy should and needs to play a larger role in the
everyday work of scientists, if we are to develop our tools any further. The con-
fusion surrounding quantum mechanics as a whole could at least in some part be
mediated by the therapeutic use of philosophy.

And yes, the authors are aware of the seeming contradiction of proposing a
general mode of analysis while also including the philosophy of the late Wittgen-
stein in it. The mixing of language games is abundant, especially regarding the
word relation. We leave it up to our future selves, and the readers, to sort this out.
For now, it stands only as a humble suggestion.

⁷We thank Johannes of AlltÅtAlla for making this thinker known to us.
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Figure 4.1: The philosophy chapter, graphically.
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5
Conclusion

Bien sûr, il n’est rien besoin de dire
À l’horizontale
Mais on ne trouve plus rien à se dire
À la verticale
Alors pour tuer le temps
Entre l’amour et l’amour
J’prends l’journal et mon stylo
Et je remplis et les A et les O

S. Gainsbourg

FINALLY, the rather abstract theory that is the ζ-calculus is defined and applied.
The authors hope that the short excursion into philosophy can serve as a

palate cleanser of sorts. In this chapter, we will discuss the novel features of the
theory in more detail. We will begin with a general discussion of the contribu-
tions of the theory of the ζ-calculus, before moving on to specific points from the
different models of the theory which were presented in the applications. We will
leave the chapter on philosophy where it stands. The philosophical investigations
serve mainly as a collection of the philosophical roots of the intersecting fields
of the thesis, a side step in congruence with, though not part of the theoretical
contributions. Thus, we will leave it out of the discussion here.

Wewill try to justify, and present theweaknesses, of using the ζ-calculus as a
quantum programming language. This will also include comparisons with other
contemporary quantum programming languages, contrasting the rather unique
paradigmof the quantum ζ-calculuswith themore commonapproaches. Thenwe
continue the discussion of the spacetime ζ-calculus, where we try to reason about
what exactly a spacetime programming language is, since no spacetime comput-
ers exist (yet?). The discussion of thesemodels as programming languages, versus
viewing them as computational physical theories, is an important point here.

And at last, we will try to draw a conclusion from the varied directions that
the thesis has taken, trying to present the theory, its applications, and the philo-
sophical justifications as a unified whole. The direction we wish to take here di-
verges from the view of the theory as one of programming. Then, we suggest
some directions for the future. Trying to expose the flaws with the work as we see
them, and what can be worked on to mend these.
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5.1 Discussion

Now onto discussing, how interesting... We will try to stay focused on what mat-
ters here, what have we done, what are the strengths, and most importantly the
flaws. To begin, we walk through the models of the ζ-calculus presented in the
chapter on applications.

5.1.1 Quantum programming
In section 3.1 we introduced the quantum ζ-calculus Z(FdHilb, {ζ, ξ}), a model
of the theory intended –in some sense– to be a quantum programming language.
Though this term, programming language, might not be entirely fitting for the
version we presented in this thesis. In the sense that it allows for writing pro-
grams that are able to be executed by a quantum computer, it does fit the label.
It does not, however, include many of the features one might expect for this use.
Explicit control structures are one such feature, present in various other quantum
programming languages. We usually distinguish two forms of this construction,
classical and quantum control. A classical conditional usually depends either on
some classical bit or the measurement of a quantum one. A prominent example
featuring classical control from the early days of quantum programming is the
quantum λ-calculus of Selinger and Valiron [48]. This language, featuring a lin-
ear type system with exponentials (types which are allowed to be duplicated) for
classical data, has such a classical conditional. Its type rule is presented in (5.1).

(5.1)
Γ1, !∆ ` P : bit Γ2, !∆ `M : A Γ2, !∆ ` N : A

Γ1, Γ2, !∆ ` if P thenM else N : A

The reason for including classical conditionals is to have some control flow
dependent on the measurement of qubits, which is useful though not for reasons
of pure quantum programming. Quantum conditionals, however, are harder to
implement. An example of a language which features this construct is QML [27],
which depending on the different iterations of the language, features either a
quantum if-expression or case-expression. The typing rule for the quantum if-
expression, where Q is the qubit type, is presented in (5.2).

(5.2)
Γ `a P : Q ∆ `◦ M : A ∆ `◦ N : A M ⊥ N

Γ,∆ `a if◦ P thenM else N : A

Two things are of note here, the notation`awherea ∈ {◦,−}denoteswhether
or not a judgement is strict (containing no discarding) or not, respectively. The
other condition being the orthogonality judgement on termsM ⊥ N. Both of these
conditions require a large formal machinery (and are therefore implementation
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heavy, see [49] for implementation of these constructs) to verify. The reason for
including this construct is more related to quantum programming than the clas-
sical one, for this construct allows for programs to be run in superposition. If the
control term (P in the case of (5.2)) is in superposition, then the output would be
too. This allows, for example, formany quantum gates to be implemented directly
in the language instead of relying on a predefined gate set (as in Selinger and Val-
iron’s quantum λ-calculus). An example implementation of the quantum not (σx)
gate in QML compared to the ζ-calculus is presented in (5.3).

qnot : Q( Q
qnot x = if◦ x then |0〉 else |1〉 qnot :≡ ξπxx(5.3)

It is the opinion of the authors that this is an important feature of any quan-
tum programming language. Relying on a predefined gate set often leads to a
style of quantum programming that looks more like a specification language for
quantum circuits. In a functional language, this tends to look like an approxima-
tion of imperative programming with stacks of let-expressions. An example of a
language which suffers from this weakness is Quipper [20]. As mentioned briefly
before, the authors feel that the quantum circuit paradigm should be considered
harmful... Languages which are modelled by it seem bound to be very low-level,
focusing largely on the ”correct placement of gates in sequence” rather than the
more interesting features of quantum computing which may lead to more fruitful
paradigms of programming. For the authors, these features seem to be entangle-
ment and complementarity, which we will focus on in the coming sections.

We return to the example in (5.3). The quantum if-expression of QML allows
for a more intuitive representation of what the σx gate does, that it negates. Com-
paring this with the ζ-term, this action is less clear, at least from the perspective of
a classical programmer. This is one reason why the version of the ζ-calculus pre-
sented in this thesis is less of a programming language andmore of an exploration
into certain features which might prove interesting for the further development
of quantum programming languages. The addition of programming-specific con-
structs to the ζ-calculus is entirely possible, though not the focus of the thesis.

We note, however, that the ζ-calculus, with ζ-abstractions, exposes another
possible paradigm of programming opposed to the one of QML, a rotational one.
This should be somewhat clear to the reader, with the focus we have put on Hopf
fibrations, spheres, axes, and phases. Together with the focus the ζ-calculus puts
on observable structures, representing the axes of rotation, this makes for an in-
teresting way to reason about computation with higher-dimensional data, which
the authors feel should be explored. Though for purposes of familiarity and ex-
pressiveness, programming constructs from classical programming could be im-
plemented on top of the rotational aspect.

Quantum conditionals can also be used to implement multi-qubit gates, the
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controlled not gate for example. In section 3.1.2.1 we presented linking functions,
functions that can connect the shared instances of variables by some other func-
tions. We showed that this concept enables the definition of several important
multi-qubit functions in the ζ-calculus. We show the comparison of our imple-
mentation of the CNOT gate, by way of linking functions (ℓ :≡ η†), to the use of
quantum conditionals in QML in (5.4).

cnot : Q( Q( Q � Q
cnot c t = if◦ c then 〈|1〉 , qnot t〉 else 〈|0〉 , t〉 cnot :≡ ζcξt ℓ〈c, t〉 # 〈c, t〉(5.4)

Once again, the implementation in QML is more intuitive from the perspec-
tive of classical programming. The ζ-term does however indicate one very sur-
prising feature of the ζ-calculus, that it is still possible to implement multi-qubit
gates, and even controlled gates, without quantum conditionals. And the reasons
for this are, to the authors at least, even more interesting. It comes mainly from
the fact that the ζ-calculus allows for explicit control of which basis a variable is
shared in, together of coursewith the inclusion of the η† term. This explicit control
of bases also allows for the definition of a whole class of interesting gates, those
which entangle andmodify input variables of a ζ-abstraction before the execution
of the body of the abstraction. In the next sections, we will cover these features in
more detail, of sharing (linearity), and of explicit control of bases (complementar-
ity).

One last comparison is worthmentioning here, Borgna and Romero’s encod-
ing of a subset of Proto-Quipper-D [50], as scalable ZX-diagrams [51]. The scal-
able ZX-calculus [52] (the SZX-calculus) is an extension of the ZX-calculus which
allows one to define a family of diagrams that scale dependent on a natural num-
ber. Proto-Quipper-D has a similar feature, where types can be dependent on a
natural number, allowing the programmer to write higher-level programs that
scale appropriately. This encoding is the only other language, to the knowledge
of the authors, that translates a functional language to ZX-diagrams, being de-
veloped independently of the ζ-calculus. We feel, however, that their translation
does not really use any of the unique features of the ZX-calculus, rather just us-
ing it as a denotation. Much of this denotation could also be made in a scalable
quantum circuit notation as well. The gate primitives of the relevant subset of
Proto-Quipper-D are translated to gate primitives defined by unary spiders in the
ZX-calculus (and the CNOT gate), something which is also possible to do with
quantum circuits. Though it is nice to see other languages using the ZX-calculus
instead of quantum circuits, we feel that this type of translation is still essentially
equivalent to the quantum circuit paradigm. It is very elegant in its way of encod-
ing dependant types as scalable diagrams, however, and this is also something
that has been discussed with regard to our language.
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5.1.1.1 On linearity

One of the early directions of this thesis work was to create a language which is
non-linear, that is a type system which does not limit the number of times vari-
ables can be used. The reasons for this are twofold. Firstly, the authors feel that
linear languages are restrictive, especially with regard to expressiveness. Writing
linear code requires a certain caution when programming. This might be good in
one sense, if you view the no-cloning theorem as putting a hard restriction on how
variables are used. However, when one views duplication of variables as sharing
instead one opens up a whole other area of largely underexplored programming
techniques, while still respecting the no-cloning theorem with regard to physical
realisability.

This brings us to the second point, of entanglement. As we covered in the
weird digression of section 3.4, the principle effect of sharing, other than creating
”copies” of states, is that it produces entanglement. The point of the section was
exactly to quantify how much entanglement is produced, which may or may not
be useful for further discussion of sharing. The point here, however, is that the
restriction of linear type systems denies entanglement from being produced im-
plicitly. Instead, entanglement can be produced by explicitly constructing it with
the constructs of the language. For example, in the quantum λ-calculus of Selinger
and Valiron, we can produce a Bell-state (two maximally entangled qubits) by
λx.CNOT〈H(new 0), new 0〉, which in the quantum ζ-calculus would be pro-
duced by the application of ζx〈x, x〉 on ζ1 (or equivalently just η). The reason for
using a linear type system is usually not justified beyond the reference to the no-
cloning theorem (for example [19, 20, 18, 53]), though one could argue against
sharing that it is proper to forbid the implicit production of entanglement. This
argument would be that entanglement produced in this way is an ”unintended”
side-effect. We do feel, however, that this restriction is too harsh, and that it limits
the expressiveness of the language to a great extent.

Allowing sharing is not unique to the ζ-calculus. Examples of languages that
include this feature are QML [27], Qunity [54], and the linear-algebraic λ-calculus
[22] (Lineal). Note that the word ”linear” in Lineal does not refer to a linear type
system but to linear algebra; Lineal does allow sharing (the authors of this thesis
made this mistake in [28]). In this regard, the distinguishing feature of the ζ-
calculus is the control of which basis a variable is shared in, as the aforementioned
languages instead rely on a preferred basis (taken to be the computational basis).

Whether or not the language allows for higher-order sharing is another point
of discussion here. Lineal does allow for functions to be shared, λ-abstractions
even act as basis terms that can be copied, while QML and Qunity do not. The
authors of Qunity give a reason for this restriction in that, according to them, ex-
isting quantum algorithms (and apparently quantum computing in general), do
not and need not employ higher-order functions. We feel that, as with sharing
in general, this viewpoint is somewhat short-sighted. The paradigm of quantum
programming is nascent, and as such we do not yet know what programming
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techniques will be useful. We feel that quantum programming languages should
be more allowing in this sense, such that novel programming techniques can be
discovered, rather than relying onwhat algorithmswe have and basing our design
on them. It is of course still of great importance that one develops the formal ma-
chinery to properly verify programswhile allowing this expressiveness. At times,
this freedom does come at a significant implementation cost and as such, one has
to tread the expressiveness-implementation dialectic with care, somethingwe feel
that the ζ-calculus hasmanaged to do to some extent. Wewill discuss this in terms
of reduction later.

To summarise, the intention of the thesis was to create a non-linear language,
one that allows for the duplication of variables. The reason for this was to afford
more expressiveness and to create a framework for further exploration of shar-
ing, both first and higher-order. Now we move on to a discussion of explicit basis
control, something that, together with sharing, makes the type of quantum pro-
gramming we discussed earlier possible.

5.1.1.2 On complementarity

Though the term ”complementarity” might be misleading here, we will try to
clear up any confusion. The ζ-calculus does not fully utilise the equational rules
which come from the complementarity of the observable structures ζ and ξ. Prin-
cipally this would be the Hopf and bialgebra rules. As outlined in [2, 55] these
rules are equivalent to the notions of complementarity and strong complemen-
tarity. Recall that the internal cocommutative comonoid (A, δβ, ϵβ) of some ob-
servable structure β represents, in the ζ-calculus, the ability for a ζ-abstraction in
the basis β to utilise contraction (by the comultiplication δβ) and weakening (by
the counit ϵβ). The internal commutative monoid (A,mβ, eβ) then, where in the
†-settingmβ = δ†β and eβ = ϵ†β, could represent a time reversal of contraction and
weakening, a cocontraction and coweakening. This would really only make sense
if the underlying abstract category of the ζ-calculus is extended to a †-symmetric
monoidal category, an extension we will outline in the future work section. Then
the cocommutative comonoid enables the structural rules, and the commutative
monoid enables the time-reversed costructural rules. In this setting, theHopf rule,
presented in (5.5), would be a rule concerning the relationship between comple-
mentary (co-)contraction and (co-)weakening.

(5.5) δξ ◦ δ†ζ = ϵ
†
ξ ◦ ϵζ =

And the bialgebra rule, presented in (5.6), would be a rule concerning the
relationship between strongly complementary contraction and cocontraction.

(5.6) (δ†ξ � δ†ξ) ◦ (1� σ� 1) ◦ (δζ � δζ) = δζ ◦ δ†ξ =
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The point here being that the ζ-abstraction syntax and observable structure
semantics of the ζ-calculus is a distinguishing feature of the language, revealing,
in the quantum model, the complementary observables for explicit control by the
programmer. We believe that complementarity is an essential feature of quantum
theory. To the knowledge of the authors, the syntactic construct we presented in
ζ-abstractions is novel, and a useful tool for further exploration in making com-
plementarity explicit in quantum programming. Together with the fact that this
syntactic construction allows for a non-linear type system to be defined, we feel
that the ζ-calculus as a quantum programming language is an important contri-
bution of the thesis.

This explicit control of the complementary observables could also be useful
with specific extensions of the ζ-calculus, with regards to programming, namely
data structures. To further utilise this feature, one could provide the language
with an extension of custom data types which can be instantiated in a basis. Say
for example that one defines a boolean data type Bool ::= Trueβ | Falseβ, then
its interpretation would be a basis vector in the basis the constructor is instanti-
ated in. This construction would of course need to be expanded further, possibly
formalising the interpretations of the constructors as orthonormal vectors in the
instantiated basis with dimension depending on the size (number of constructors)
of the data type. An example interpretation of the boolean data type is presented
in (5.7).

(5.7) JTrueβK = β1 : Bool and JFalseβK = βπ1 : Bool
In summary, we believe that the explicit basis control of the ζ-calculus al-

lows for a paradigm of quantum programming that opens up the possibility of
utilising complementary observables in a novel way. We speculate that further
development of high-level programming constructs which also use this basis de-
notation can be used in an interesting way together with the quantum ζ-calculus.
This concludes our discussion on quantum programming, nowwemove on to the
more speculative models of the language.

5.1.2 Orders of computation and the spacetime calculus
In this section, we will provide some motivation and discuss the further appli-
cations of the ζ-calculus made regarding the spacetime calculus and orders of
computation. In all previous instances where we have specifically discussed the
concrete category FdHilb, its definition has been the monoidal category with the
tensor product � as the tensorial functor, and the field C of complex numbers as
the tensorial unit. Aswill bemade clear later in this section, wenowwish to distin-
guish between two types of monoidal categories where the tensorial unit is either
of the fields R and C. Since both of these scalar fields are commutative, there is
no difference here with regard to coherence. We shall write FdHilbK for these
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concrete categories, whereK ∈ {R,C}. Further, we will speculate on the possibil-
ity of defining a concrete category of Hilbert spaces where its tensorial unit is a
division ring instead, thus allowing K in the previous definition to range over the
reals R, the complex numbers C, and the quaternions H. To distinguish these,
very speculative cases, we shall denote these concrete categories by FdHilb®

K ¹,
whereK ∈ {R,C,H}.

5.1.2.1 Motivation

We introduced the spacetime ζ-calculus as the model Z(FdHilbC, {τ, ξ, υ, ζ}) and
referred to this in the hierarchy of orders of computation as o

3
. Intended as a

stepping stone in our connection with the various Hopf fibrations, it functions
as a neat example of an application of this language to a specific algebra that is
known tomost physicists. A somewhat primitive digression into an application of
the ζ-calculus to a physical theory beyond quantum mechanics. To this, we wish
to make two points of motivation, as well as give a discussion of the four orders
of computation in which the quantum and spacetime ζ-calculi are included.

Firstly, the spacetime calculus is to be seen as an indication towards the gen-
erality of the construction of the ζ-calculus that we presented above. While orig-
inally intended to function as a calculus in the style of a programming language
deeply inspired by the ZX-calculus, it became further apparent that a descrip-
tion of a general language would be possible. Thus, we presented the general
ζ-calculus, not dependent upon any underlying representation. For the purpose
of displaying this generality, another representation in terms of the γ-matrices
from fermionic quantum field theory was constructed.

While this choice of representation might seem somewhat arbitrary, as dis-
cussed in chapter 3.2, going from a representation in terms of the Pauli-matrices
to one in terms of the γ-matrices is not completely unfounded, at least from a ge-
ometrical point of view. The geometrical motivation for this connection is made
by Hiley in [29].

This step in the general hierarchy of orders concerns our second point, re-
garding the conjecture presented in section 3.3. We introduced the orders of com-
putation, positing that each order corresponds to a model of the ζ-calculus de-
scribing rotational computation over the constituent axes of the projective spaces
for each level of Hopf fibration. We took that there was a correspondence be-
tween the number of observable structures and the dimensionality of the projec-
tive spaces proposing that a construction similar to that of the quantum ζ-calculus
ought to exist for each order. This consideration was further strengthened upon
learning of the Clifford algebra hierarchy, where we posited to find the necessary
vector spaces associated with each algebra for the different orders.

In order two, that iso
2
, we constructed the quantum ζ-calculus in the model

Z(FdHilbC, {ζ, ξ}), describing rotation of the spin-components of quantum states

¹https://en.wiktionary.org/wiki/vara_ute_och_cykla
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in the base space of C2 as a basis for computation. A correspondence to the com-
plex Hopf fibration è

2
was made, with the projective space S2 as the state space

and the fibre space S1 as the global phase freedom.
The correspondences made thus far have been at least somewhat sober, in

the opinion of the authors. However, in o
3
we considered the spacetime calcu-

lus in the model Z(FdHilbC, {τ, ξ, υ, ζ}). The observable structures of this order
correspond to four sets of orthonormal bases for the space C4 whose matrix rep-
resentations generate the Clifford algebra Cℓ1,3. We considered, again, the observ-
able structures generated by the γ-matrices as axes² of the generalised higher-
dimensional Bloch sphere S4 around which rotation is generated by the phase
group. We saw that the fibre space S3 can not be as easily interpreted as a global
phase freedom in the complex spacetime ζ-calculus. From thiswewere led to con-
sider the quaternionic spacetime ζ-calculus instead, which we will cover shortly.
However, we wish to cover the remaining orders first. As a side-note, it is known
to the authors that their languagewith regard to themany intersecting subjects in-
volved is at this time insufficient to give a detailed description of the connections
made. We must thus leave any further descriptions of this topic for the future
although it was in our view that the connections made were necessary to point
out.

This brings us to the orders as of yet not described. Extending themorewell-
known language ofo

2
we can consider the other orders in a similar manner. This

would force us to consider the first ordero
1
as amodelZ(FdHilbR, {ζ}) consisting

of a single abstraction basis describing rotational computation over a single axis.
We are also forced to consider a real Hilbert space R2 as we still want to consider
two-level systems.³ The scalar monoid in this instance of FdHilb should be taken
as the real numbers R which is commutative. We will follow the interpretation
for each è

n
of the fibre space as the family of points identifying the same state in

the base space, corresponding to the global phase freedom in this order. In this
case, for è

1
the family of points consists of points in S0, that is the set of points

{−1, 1} in the total space S1 that map to the same state in the base space S1.
Next we consider o

4
, to which we assign the model Z(FdHilbC, {ζω}) for

ω = {0 . . . 7}. As this is the least explored of the proposed orders of computa-
tion, we do not wish to say much about this other than including a number of
perhaps baseless speculations. We assume the base space of the corresponding
Hopf fibration è

4
which would suggest a base vector space of C8, which we note

can be identified with the space of two-dimensional octonionic vectors O2. Go-
ing with the pattern, we assume the axes of S8 to correspond to our eight basis

²The interpretation of the observable structures generated by the γ-matrices as axes in a four-
dimensional space is not unique to this thesis. A similar interpretation to this has in fact been
studied before in the spacetime algebra. See the introduction by Hestenes[56]. To the seeming con-
fusion of many physics students, the set γµ contains a single index which is usually reserved for
vectors, meaning that this set transforms as a vector. Hestenes provides an interpretation of this,
regarding γµ as an orthonormal basis for a vector space, as opposed to a set of matrices.

³We note that R2 may be identified with C.
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abstractions with similar arguments being made regarding the global phase free-
dom here as above. We make another interpretation of this order from the basis
crystal for this order in section 3.3, however, as previously mentioned, this is the
least explored of the orders, thus really up to any interpretation. This is, how-
ever, where the connection between the orders to the Clifford hierarchy appears
less strong. The fourth entry in the Clifford hierarchy is the conformal or twistor
Clifford Cℓ2,4 consisting of six generators over a six-dimensional hypersphere. [29]
This is somewhat unfortunate. However, until the authors have made themselves
more comfortable with twistor algebra, we do not wish tomake further comments
on this order.

5.1.2.2 Quaternionic spacetime calculus

Thus, we arrive at our short discussion on the possibility of defining the spacetime
calculus over the division ring of the quaternionsH. Quaternionic interpretations
of quantum mechanics as well as quantum field theory have been developed as
an alternative to the usual description over the complex numbers. [57, 58] Wewill
here also make an attempt at such a quaternionic interpretation of the language
of observable structures of ζ, in the spacetime ζ-calculus.

What is pertinent to our discussion iswhat effects this type of description has
on the possibility of a categorical description of quaternionic quantummechanics.
Specifically, we wish to construct a model of the ζ-calculus similarly defined as
the complex spacetime calculus, only over H⁴. This is the model we denote by
Z(FdHilb®

H , {τ, ξ, υ, ζ}), with the base Hilbert space consisting of vectors inH2.
The basis abstractions are defined with respect to one particular representa-

tion of the quaternionic γ-matrices, given in figure 5.1 where for each k, I ranges
over the quaternionic units {i, j, k}.

γ0 :=

(
1 0

0 −1

)
γk :=

(
0 −I
I 0

)
γ5 :=

(
0 1

1 0

)

Figure 5.1: Definition of quaternionic γ-matrices.

Herewe can find a clear semblance of γ0 and γ5 to the Pauli-Z and Xmatrices
used in the quantum ζ-calculus, and likewise the spatial γ-matrices to the Pauli-Y
matrix. Note further here that, as opposed to the complex case, these matrices are
all Hermitian. For the spatial γ-matrices, the eigenvalues are not well-defined as
in the temporal γ-matrices. It can be shown, following the method presented in
[59], that the spectrum of these matrices is infinite. Specifically, it allows a spec-
trum of points covering S2, meaning there is no single set of two eigenvectors that
would function as the canonical way to generate these matrices. Regardless of
this, we move on and make a choice of two eigenvectors corresponding to the real

⁴More generally, this pattern extends as o
1
∼ R2, o

2
∼ C2, o

3
∼H2, and o

4
∼ O2.
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eigenvalues ±1, meanwhile running the risk of future criticism on this. Using
these we can construct the corresponding quaternionic observable structures.

And now we come to defining what scalars correspond to the quaternionic
FdHilb, which is where we run into problems. It was shown in [60]⁵ that in any
monoidal category, relying on a particular coherence axiom of the left and right-
unitors⁶, that scalars in a monoidal category must always be commutative. Given
that we wish to consider a scalar constituted of quaternions, this is seemingly not
possible. Hopefully critical, yet mostly despondent, this seems to be a warrant for
the cancelling of our endeavours in a quaternionic ζ-calculus. Beyond considering
any adjustments of the fundamental aspects of the categorical description, such as
considering whether a further categorified 2-Hilbert space [61] description would
be of any help in this regard, the authors do for the moment possess insufficient
knowledge to further tackle this problem. Thus it is left for future endeavours.

5.1.3 Reduction

The final point of discussion will be focused on what we introduced in section
2.3.2, the reduction relation. We started out from the reduction relation of ΛSMC,
the internal type theory of symmetricmonoidal categories as presented in [1]. The
principal difficulty in extending this reduction relation to the ζ-calculus relates to
non-linearity. Since we cannot perfectly copy every term over every basis it is dif-
ficult to define substitution in the same way as for the linear case. This is because
for a β-redex on the form (ζxM)N, if x appears multiple times in the body of the
abstraction, the argument N has to perfectly copy over ζ for the interpretation of
the redex to be equal to the interpretation of the reduct M[x := N]. Note that
we also lose the information of which basis the variable was introduced in. To
aid in the definition of substitution then, we introduced the condition of commu-
tation with sharing over a basis. This essentially states that a term N commutes
with sharing over ζ if it is perfectly copied, while possibly containing some rest
where its context needs to be duplicated. Copying a context is always possible
since every variable in it is decorated with the basis in which it was introduced.

With this condition, we can extend the reduction relation of ΛSMC where
most of the cases follow directly. All of the cases of η-reduction are the same in
the ζ-calculus as in ΛSMC, with the exception of the η-reduction of ζxMxwhich is
simply conditioned by the usual requirement of non-linear η-reduction, that x 6∈
fv(M). For β-reduction every linear case (where variables are introduced in the
λ-basis) the reductions are the same as in ΛSMC. For the non-linear cases we add
the requirement of commutation with sharing. To have some notion of soundness
for the combined reduction relation →βη we prove subject reduction. This is the
statement that, given that there exists a valid judgement Γ ` M : A and that
M→βη N, it holds that N is of the same type asM, and that their interpretations

⁵See also [11] for a simple review, specifically regarding the quaternionic quantum mechanics.
⁶Which reads λI = ρI.
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are equal.
This is the presentation of the reduction relation of the ζ-calculus as it cur-

rently stands. The main problem of which is that it is not complete in the sense
that we cannot reduce every ζ-term to some desired normal form. If we were to
construct an equational theory instead, itwould not be able to show that two terms
whose interpretations are equal are equal in the equational theory. In this sense,
the name ζ-calculus is semi-justified, since this form of the language cannot be
used for fully defined reduction on its own, rather relying on some notion of con-
vertibility in the interpretations of each model. Though we feel the name is still
fitting as the language is in every sense an extension of the classical λ-calculus. For
us to be completely satisfied with our reduction relation we would have to prove
that it is Church-Rosser, as is the case for the reduction relation of ΛSMC. Though
because of it being proven for ΛSMC the same holds for the linear subset of the
ζ-calculus. The Church-Rosser theorem is the statement that for a termM ∈ z, if
M �βη M

′ andM �βη N, then there exists a term N ′ ∈ z such thatM ′ �βη N
′

andN�βη N
′, where�βη is the reflexive transitive closure of→βη (the reduction

relation on βη). This is illustrated by the diagram in (5.8).

(5.8)

M

M ′ N

N ′

βη βη

βηβη

Onto damage control. What exactly are the implications of these problems?
It mainly concerns the ζ-calculus as a general physical theory. It would of course
be very nice to be able to reason computationally about the physical phenomena
that the ζ-calculus is able to capture within the theory itself. This is the main mo-
tivation for further examination andwork on the reduction relation. With regards
to the ζ-calculus as a programming language, in the quantummodel for example,
we do not think that this problem affects it to any significant extent. It is still possi-
ble to get an interpretation of every ζ-term as a ZX-diagram, and thus, it is possible
to optimise and extract a program to be run on a quantum computer utilising the
various tools for that language. We will discuss options for the implementation
of this quantum programming language in the future works section. For this rea-
son, and because of the allure of other interesting directions of the work, together
with the time restrictions of the thesis, we have not been able to investigate re-
duction further. We leave it up to our future selves to mend these problems if the
ζ-calculus is to become a rigorous physical theory by itself.
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5.2 Future work

Herewewill discussmore concretely the directions of futurework thatwas touched
upon during the discussion. The points of discussion here will be fairly short,
since we already brought up these points in the context of where they are rele-
vant. This section then will serve mainly as a collection of suggestions for anyone
that wishes to develop any parts of the project further.

5.2.1 The †-functor

With the definition of the ζ-calculus being housed in symmetric monoidal com-
pact categories, we do not fully utilise the algebraic properties of observable struc-
tures. This mainly concerns the interaction between the internal cocommutative
comonoid and commutativemonoid, with the requirements of the Frobenius con-
dition and speciality. Then, to make use of the full definition of observable struc-
tures we would want to move the underlying category to †-symmetric monoidal
categories. The additional structure added here is the functor † : Cop → C called
the †-functor, which is identity-on-objects (i.e. ∀A ∈ Obj(C) . A† = A), and which
reverses morphisms, for which ∀f ∈ Hom(C) . f†† = f and (f � g)† = f† � g†. In
our case, where objects are the types of the language, the reversal of morphisms
would require us to be able to reverse a judgement Γ ` M : A to A ` M : Γ . This
is easy with regards to the interpretations as diagrams, it is simply the horizontal
reflection. However, it would also require us to extend the terms and typing rules
of the language to be able to derive this reversal with regards to the †-functor,
which is substantially more difficult. A language which does take the †-functor
into account is the †λ-calculus [21], which would be a valuable resource in further
work in this regard.

5.2.2 Reduction

We discussed earlier the problems the ζ-calculus with regards to its reduction
relation. As we pointed out there our main issue with it is that it is limited to
what kinds of terms can reduce. The only property of observable structures we
use in reduction is the ones of the internal cocommutative comonoid, and possi-
bly the set of classical points, by the condition of commutation with sharing. A
more extensive reduction relation would be possible, utilising more of the con-
cepts introduced in [2]. This reduction relation would then be more similar to the
equational theory of the ZX-calculus, which is built by these concepts. Many of
these concepts rely on the properties specific to certain observable structures, and
thus, the reduction relation has to depend in some sense on the model used. An
attempt at such an equational theory in the model Z(FdHilb, {ζ, ξ}) was made in
[28], though also incomplete.
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5.2.3 Dependent type theory

The encoding of a subset λD of Proto-Quipper-D in the SZX-calculus was intro-
duced in [51]. This encoding utilises scalable ZX-diagrams, where a diagram can
be scaled by some natural number, to encode dependent types that depend on nat-
ural number. This is useful for describing quantum algorithms at a higher level, a
quantum Fourier transform on n qubits for example. This type of encoding could
also be employed in the ζ-calculus. This would first require a size operator on
each type, and on contexts. From this, a SZX-diagram dependent on some type
can be scaled by the size of that type. This would also require an extension of the
type system of the ζ-calculus to a dependent one, as in λD.

5.2.4 Implementation

The simplest way to produce an implementation of the ζ-calculuswould be a com-
piler from the syntax of the language to some graphfile format. The one fitting our
purposes best would be the diagrammatic proof assistant Quantomatic [62]. From
an instance z(b,Uζ∈b) one would construct a diagrammatic language in Quan-
tomatic, one node type for each symbol in b, each having the set Uζ as possible
labels. The general compilation chain would then be as follows.

Firstly, the front-end of the compiler would consist of a parser for the syntax
of the chosen instance, and then a type-checker. Then, through an intermedi-
ate graph representation of the string diagram interpretations, each typed term
would be assigned a diagram by the semantics of the ζ-calculus. This interme-
diate representation could then be translated to the Quantomatic qgraph format.
Here, the coordinates of the elements of the diagram would have to be scaled in
relation to the data structure. This compiler then would be a way of generating a
Quantomatic diagram for programs in the ζ-calculus.

In the case of the quantum ζ-calculus, with the instance z({ζ, ξ}, [0, 2π)) the
diagrammatic language in Quantomatic would be the ZX-calculus, where ζ cor-
responds to the green nodes and ξ corresponds to the red ones. For this to be
translated into a language that is runnable by a quantum computer one could
use the PyZX tool⁷. This tool can then load qgraph files to be interpreted as ZX-
diagrams. PyZX then allows for translation into many other formats for quantum
computer code, principally QASM, but also Quipper and QC. One could also use
PyZX to optimise the ZX-diagrams that the compiler generates. With this imple-
mentation of a ζ-compiler, and the quantum instance, the ζ-calculus would be
usable as a functional quantum programming language, with features for circuit
optimisation.

This concludes our short discussion on future work. We again refer back
to the discussion of the different aspects of the ζ-calculus for more nuance as to
where possible improvements on the theory could be made.

⁷https://github.com/Quantomatic/pyzx
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5.3 Conclusion
At last, we shall try to draw some sort of conclusion from the work that we have
done. This is not an easy task seeing as the work has taken on a myriad of direc-
tions. Whether or not the absentmindedness of the authors has played any part in
this is up for future discussion. The results of our work should be viewed through
the perspective of the intersection of the chosen academic fields of the authors, of
theoretical computer science and theoretical physics. The combined expression
of which hopefully highlights the unifying trend we wish to place this thesis in,
the creeping intrusion of the methods of computer science in physics. We do not
refer to computational physics here, the application of insane computing power
to model physical systems. What we wish to demonstrate is the fruitfulness of
applying the rigorous and formal methods of theoretical computer science as an
alternative to the conventional mathematics of physical theories.

In our case this trend is greatly inspired by the field of categorical quantum
mechanics, having relied heavily on its methods throughout the thesis. The shin-
ing elegance of the ZX-calculus is what inspired us to attempt a thesis in this field
from the beginning. Our shared love for the λ-calculus and functional program-
ming was the other source of inspiration.

Regarding philosophy, its inclusion in this thesis is largely an expression of
our opinion that philosophy should play an integral part of the work of scientists.
Having this stance then, compelled us to write a short chapter on the develop-
ments of our personal philosophical discussions that played out during the writ-
ing of this thesis. We of course have our philosophically and politically motivated
friends to thank for the many nights of discussion. We also thank our supervisor
Robin for the philosophical input, and Ilyas for the kind words of encouragement,
finally making us believe that the ideas could be taken seriously. The work Rovelli
has done to encourage philosophy in physics has also been a great inspiration in
this endeavour. On this point, it would be nice to see more theses include some
mention of the philosophical roots of their technical work.

To summarise the entirety of the thesis, we have defined an extension of
the λ-calculus in symmetric monoidal categories. We have equipped this lan-
guage with an algebraic structure capturing the properties of quantum observ-
ables. With this extension we have showed that it is precisely what is needed to
make the language non-linear, and thus creating a novel way to look at quantum
theory through the lens of computer science. The language has been applied for
use as a quantum programming language, giving rise to interesting functional
programming techniques. Further, the language has been investigated for use in
other physical theories, principally quantum field theory, showing that its use ex-
tends beyond the programming of quantum computers. Then, a short exploration
of philosophy ties together the form and content of the work to a larger mode of
analysis. With this, we conclude the ζ-calculus, a λ-calculus for quantum theo-
ries.
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A
Color change rule in o3

A table entry β/η represents the matrix product ηβη†.

Table A.1: Colour change table for o
3
.

βT βX βY βZ βW
ηT T X Y Z W

ηX −W −T Z −Y X

ηY −W Z T −X −Y
ηZ −W Y −X −T Z

ηW −W X Y Z T
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B
Syntax-directed typing rules

` ⋆ : I
U

x :ζA ∈ Γ
Γ ` x : A

V
Γ ` ζαn : n

G
Γ, x :ζA `M : B

Γ ` ζαxM : A→ B
B

Γ `M : A→ B Γ ` N : A

Γ `MN : B
A

Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A� B T

Γ `M : A� B Γ, x :ζA,y :ζB ` N : C

Γ ` let 〈x, y〉 =ζ M in N : C
L

Γ `M : I Γ ` N : A

Γ ` let ⋆ =M in N : A
I

Figure B.1: Syntax-directed typing rules.
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C. Derivations of ζ-terms

V

V
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Q
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B
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Q∗

Q∗

Figure C.1: The CNOT-gate.
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Q∗

Q
α

Figure C.2: The Z rotation gate.
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B
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Q

Figure C.3: The X rotation gate.
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(Q → Q)∗

(Q � Q)∗

Figure C.4: The linking function.
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Figure C.5: The gadget function.
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D
Formatting of runic characters

The formatting of runic characters used in this thesis is achieved by the excellent
allrunes package by Carl-Gustav Werner. This package can be found at https:
//www.ctan.org/tex-archive/fonts/allrunes. The specific runes we use, and
their respective commands in the allrunes package are presented below.

• Odal (o): \textarc{o}

• Algiz (z): \textarc{z}

• Berkano (b): \textarc{b}

• Haglaz (è): \textarc{\h}

• Kaun (K): \textarc{K}

We do recognise the use of runic symbols by certain far-right groups. If it is
not already clear by a certain chapter of this thesis that we are disgusted by these
vile ”people” we want to make it abundantly clear here: Fuck Nazis!
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